Abstract:
The present invention relates to multilayer films. In one aspect, a multilayer film comprises a first polyethylene composition having a density of at least 0.965 g/cm3 and as further described herein and a second polyethylene composition having a density of 0.924 g/cm3 to 0.936 g/cm3 and as further described herein, wherein the multilayer film comprises 40 weight percent or less of the first polyethylene composition based on the total weight of the multilayer film.
Abstract:
Embodiments of the present invention relate to polyethylene-based compositions, monolayer films, multilayer films, laminates, and articles. In one aspect, a polyethylene-based composition comprises (A) at least 95% by weight, based on the total weight of the polyethylene-based composition, of one or more polyethylenes; and (B) 250 to 15,000 ppm, based on the total weight of the polyethylene-based composition, of a polydimethylsiloxane having a number average molecular weight (Mn) of 1,000 to 40,000 g/mol, wherein the polyethylene-based composition has a density of 0.865 to 0.915 g/cm3 and a melt index (I2) of 0.5 to 25 g/10 minutes.
Abstract:
Embodiments of a polyethylene composition are provided, which may include a first polyethylene fraction comprising at least one peak in a temperature range of from 35° C. to 70° C. in an elution profile via improved comonomer composition distribution (iCCD) analysis method, where a first polyethylene area fraction is an area in the elution profile from 35° C. to 70° C., and where the first polyethylene fraction area comprises from 25% to 65% of the total area of the elution profile; and a second polyethylene fraction comprising at least one peak in a temperature range of from 85° C. to 120° C. in the elution profile, where a second polyethylene area fraction is an area in the elution profile from 85° C. to 120° C., and where the second polyethylene fraction area comprises at least 20% of the total area of the elution profile.
Abstract:
Disclosed herein is a block copolymer comprising a first segment and a second segment that are covalently bonded to each other and that are chemically different from each other; where the first segment has a first surface free energy and where the second segment has a second surface free energy; and an additive copolymer; where the additive copolymer comprises a surface free energy reducing moiety where the surface free energy reducing moiety has a lower surface free energy than that of the first segment and the second segment; the additive copolymer further comprising one or more moieties having an affinity to the block copolymer; where the surface free energy reducing moiety is chemically different from the first segment and from the second segment; where the additive copolymer is not water miscible; and where the additive copolymer is not covalently bonded with the block copolymer.
Abstract:
A method of making a hollow fiber carbon molecular sieve is comprised of heating a hollow polymer fiber to a carbonization temperature in an atmosphere that is non-oxidizing to form a hollow fiber carbon molecular sieve, wherein during at least a portion of the heating a tensile force is applied to the hollow polymer fiber. The method may improve the separation of gases similar in size such a propylene from propane.
Abstract:
An asymmetric hollow fiber (CMS) carbon molecular sieve is made by providing a dope solution comprised of a polvimide and a solvent, at a temperature greater than 250° C. that is less than the storage modulus at a temperature of 250° C., but no more than ten times less as measured using dynamic mechanical thermal analysis from 250° C. to a temperature where the polyimide carbonizes. The polvimide is shaped into a hollow polvimide fiber, the solvent removed and the polyimide hollow fiber is heated to pyroiyze the polvimide and form the asymmetric hollow carbon molecular sieve. The asymmetric hollow fiber carbon molecular sieve has a wall that is defined by an inner surface and outer surface of said fiber and the wall has an inner porous support region extending from the inner surface to an outer raicroporous separation region that extends from the inner porous support region to the outer surface. Surprisingly, when the polyimide has the particular storage modulus characteristics, the method allows for the hollow fiber CMS to be made without any pre-treatmenis or additives to inhibit stractural collapse of the inner microporous region.
Abstract:
Disclosed herein is a block copolymer comprising a first segment and a second segment that are covalently bonded to each other and that are chemically different from each other; where the first segment has a first surface free energy and where the second segment has a second surface free energy; and an additive copolymer; where the additive copolymer comprises a surface free energy reducing moiety where the surface free energy reducing moiety has a lower surface free energy than that of the first segment and the second segment; the additive copolymer further comprising one or more moieties having an affinity to the block copolymer; where the surface free energy reducing moiety is chemically different from the first segment and from the second segment; where the additive copolymer is not water miscible; and where the additive copolymer is not covalently bonded with the block copolymer.
Abstract:
Disclosed herein is a method comprising disposing a first composition comprising a first block copolymer upon a substrate; where the first block copolymer comprises a first segment and a second segment that are covalently bonded to each other and that are chemically different from each other; where the first segment has a first surface free energy and where the second segment has a second surface free energy; and disposing a second composition comprising an second copolymer upon a free surface of the first block copolymer; where the second copolymer comprises a surface free energy reducing moiety; where the surface free energy reducing moiety has a lower surface free energy than the first surface free energy and the second surface free energy; the second copolymer further comprising one or more moieties having an affinity to the first block copolymer; where the surface free energy reducing moiety is chemically different from the first segment and from the second segment.
Abstract:
The present disclosure provides a multilayer film. The multilayer film includes at least two layers including a sealant layer and a second layer in contact with the sealant layer. The sealant layer contains (A) a first ethylene-based polymer having a density from 0.900 g/cc to 0.925 g/cc and a melt index from 0.5 g/10 min to 30 g/10 min; and (B) a polyethylene-polydimethylsiloxane block copolymer having a weight average molecular weight from 1,000 g/mol to 10,000 g/mol. The second layer contains a second ethylene-based polymer.
Abstract:
The present invention is a process to modify a starting polyethylene resin composition. In the process, a starting polyethylene resin composition is extruded with at least one primary antioxidant and a free-radical generator to make a modified polyethylene resin composition.