Abstract:
Polyisocyanate-based polymers are formed by curing a reaction mixture containing at least one polyisocyanate and at least one isocyanate-reactive compound having at least two isocyanate-reactive groups in the presence of a bismuth thiophosphoric acid diester salt.
Abstract:
Provided is a non-cyclopentadienyl-based chromium-ligand complex, preferably a chromium-ligand complex of formula (J): LCr(R A ) m (D) k (J), wherein L is a non-Cp monoanionic ligand; Cr (chromium) is in a formal oxidation state of +3 or +2; when Cr formally is Cr +3 , either m is 1 and R A is hydrocarbylene (a hydrocarbylene chromium-ligand complex of formula (J)) or m is 2 and each R A independently is hydrocarbyl (a dihydrocarbyl chromium-ligand complex of formula (J)), wherein each hydrocarbyl or hydrocarbylene of R A independently is unsubstituted or substituted by from 1 to 5 R AS ; each R AS independently is a neutral aprotic heteroalkyl, neutral aprotic heterocycloalkyl, neutral aprotic heteroaryl, or neutral aprotic aryl; when Cr formally is Cr +2 , m is 1 and R A is hydrocarbyl (a hydrocarbyl chromium-ligand complex of formula (J)); k is an integer of 0 or 1; D is absent when k is 0 or D is a neutral ligand when k is 1; wherein the chromium-ligand complex of formula (J) is overall neutral and lacks a cyclopentadienyl-based (Cp-based) moiety. Also provided is a chromium catalyst comprising or prepared from the complex. Also provided is a process of making the catalyst and a process employing the chromium catalyst for polymerizing the olefin monomer, especially a straight chain 1-alkene, to prepare the polyolefin, especially a partially chain-straightened poly( 1-alkene) or olefin block copolymer. Further provided is the partially chain- straightened poly( 1-alkene) or olefin block copolymer prepared thereby. Also provided is a high throughput workflow.
Abstract:
The invention relates to oligomerization of olefins, such as ethylene, to higher olefins, such as a mixture of 1-hexene and 1-octene, using a catalyst system that comprises a) a source of chromium b) one or more activators and c) a phosphacycle-containing ligating compound. Addtionally, the invention relates to a phosphacycle-containing ligating compound and a process for making said compound.
Abstract:
The invention provides a composition comprising at least one compound of Formula 1 through Formula 8, each as described herein. These compounds, containing an imidazopyrazine moiety, are useful in organic electroluminescence devices.
Abstract:
The invention relates to oligomerization of olefins, such as ethylene, to higher olefins, such as a mixture of 1-hexene and 1-octene, using a catalyst system that comprises a) a source of chromium b) one or more activators and c) a phosphacycle-containing ligating compound. Addtionally, the invention relates to a phosphacycle-containing ligating compound and a process for making said compound.
Abstract:
The invention relates to oligomerization of olefins, such as ethylene, to higher olefins, such as a mixture of 1-hexene and 1-octene, using a catalyst system that comprises a) a source of chromium b) one or more activators and c) a phosphacycle-containing ligating compound. Addtionally, the invention relates to a phosphacycle-containing ligating compound and a process for making said compound.
Abstract:
Disclosed are polymeric compositions with improved electrical breakdown strength. The polymeric compositions contain a poly-α-olefin and a voltage-stabilizing agent, which comprises an organic carboxylic ester comprising at least one aromatic ring and from 1 to 2 carboxylic alkyl ester substituents. Alternatively, the voltage-stabilizing agent can comprise trioctyl trimellitate. The present polymeric compositions exhibit improved electrical breakdown strength when applied as an insulating and/or shielding layer for power cables.
Abstract:
The invention provides a composition comprising at least one compound of Formula 1 through Formula 8, each as described herein. These compounds, containing an imidazopyrazine moiety, are useful in organic electroluminescence devices.
Abstract:
The invention relates to oligomerization of olefins, such as ethylene, to higher olefins, such as a mixture of 1-hexene and 1-octene, using a catalyst system that comprises a) a source of chromium b) one or more activators and c) a phosphacycle-containing ligating compound. Additionally, the invention relates to a phosphacycle-containing ligating compound and a process for making said compound.