Abstract:
A method is provided of controlling a pump including a electrical motor coupled to a rotor which carries first and second impellers at opposite ends thereof. The method includes: (a) driving the rotor using the motor, so as to circulate fluid from the first impeller through a first fluid circuit, the second impeller, a second fluid circuit, and back to the first impeller; (b) determining a resistance of the first fluid circuit, based on a first motor parameter which is a function of electrical power delivered to the motor; (c) determining a flow rate through the first fluid circuit based on a second motor parameter which is a function of electrical power delivered to the motor; and (d) varying at least one operational parameter of the pump so as to maintain a predetermined relationship between the flow rate and the resistance of the first fluid circuit.
Abstract:
A method is provided of controlling a pump including a electrical motor coupled to a rotor which carries first and second impellers at opposite ends thereof. The method includes: (a) driving the rotor using the motor, so as to circulate fluid from the first impeller through a first fluid circuit, the second impeller, a second fluid circuit, and back to the first impeller; (b) determining a resistance of the first fluid circuit, based on a first motor parameter; (c) determining a flow rate through the first fluid circuit based on a second motor parameter; and (d) varying at least one operational parameter of the pump so as to maintain a predetermined relationship between the flow rate and the resistance of the first fluid circuit.
Abstract:
A hot wire igniter for igniting a gas appliance is disclosed. The coil of the hot wire igniter is formed from a thin high temperature, iron, chromium, aluminum alloy having a center section that is tightly wound. Alternatively, the coil can be formed from an alloy of platinum and iridium, or a similar high temperature metal alloy. The coil turns initially do not touch one another and each end of the coil is welded to a lead-in rod that is received within an insulator member. The lead-in rods are connected to a power source. The coil portion of the hot wire igniter is received within a gas collector box which is attached to the burner to be ignited. Application of the voltage source to the lead-in rods causes the coil of wire to reach a temperature in excess of the ignition temperature of the gas-air mixture which surrounds same causing the ignition of the mixture.
Abstract:
A pump (10) includes a housing, a stator (20) supported in the housing, and a rotor assembly (30). The rotor assembly (30) includes a rotor (32) supported in the housing for rotation relative to the stator (20) about an axis (12). The rotor assembly (30) also includes a first impeller (34) operatively coupled to a first axial end of the rotor (32) for rotation with the rotor about the axis (12). The rotor assembly further includes a second impeller (36) operatively coupled to a second axial end of the rotor (32), opposite the first axial end, for rotation with the rotor about the axis (12). The rotor assembly (30) is movable along the axis (12) relative to the housing to adjust hydraulic performance characteristics of the pump (10).
Abstract:
A pump includes: (a) an elongated pump housing having first and second ends; (b) a primary impeller mounted in the housing for rotation about an axis, the impeller comprising a plurality of vanes whose outer tips define an impeller plane; (c) an inlet disposed in fluid communication with the primary impeller; and (d) an annular volute housing communicating with the primary impeller and with an outlet, where the volute housing is axially offset from the impeller plane.
Abstract:
A pump (10) includes a housing, a stator (20) supported in the housing, and a rotor assembly (30). The rotor assembly (30) includes a rotor (32) supported in the housing for rotation relative to the stator (20) about an axis (12). The rotor assembly (30) also includes a first impeller (34) operatively coupled to a first axial end of the rotor (32) for rotation with the rotor about the axis (12). The rotor assembly further includes a second impeller (36) operatively coupled to a second axial end of the rotor (32), opposite the first axial end, for rotation with the rotor about the axis (12). The rotor assembly (30) is movable along the axis (12) relative to the housing to adjust hydraulic performance characteristics of the pump (10).
Abstract:
A pump includes a housing, a stator supported in the housing, and a rotor assembly including a rotor supported in the housing for rotation relative to the stator about an axis. The stator includes a stator core, a first lamination wound around an axial portion of the stator core, and a second lamination wound around a second axial portion of the stator core. The first and second laminations are spaced from each other along the length of the stator core. The rotor includes a rotor core, a first magnet assembly that extends around an axial portion of the rotor core, and a second magnet assembly that extends around a second axial portion of the rotor core. The first and second magnet assemblies are spaced from each other along the length of the rotor.
Abstract:
A pump (10) includes a housing, a stator (20) supported in the housing, and a rotor assembly (30). The rotor assembly (30) includes a rotor (32) supported in the housing for rotation relative to the stator (20) about an axis (12). The rotor assembly (30) also includes a first impeller (34) operatively coupled to a first axial end of the rotor (32) for rotation with the rotor about the axis (12). The rotor assembly further includes a second impeller (36) operatively coupled to a second axial end of the rotor (32), opposite the first axial end, for rotation with the rotor about the axis (12). The rotor assembly (30) is movable along the axis (12) relative to the housing to adjust hydraulic performance characteristics of the pump (10).
Abstract:
A method is provided of controlling a pump including a electrical motor coupled to a rotor which carries first and second impellers at opposite ends thereof. The method includes: (a) driving the rotor using the motor, so as to circulate fluid from the first impeller through a first fluid circuit, the second impeller, a second fluid circuit, and back to the first impeller; (b) determining a resistance of the first fluid circuit, based on a first motor parameter which is a function of electrical power delivered to the motor; (c) determining a flow rate through the first fluid circuit based on a second motor parameter which is a function of electrical power delivered to the motor; and (d) varying at least one operational parameter of the pump so as to maintain a predetermined relationship between the flow rate and the resistance of the first fluid circuit.
Abstract:
A pump includes: (a) an elongated pump housing having first and second ends; (b) a primary impeller mounted in the housing for rotation about an axis, the impeller comprising a plurality of vanes whose outer tips define an impeller plane; (c) an inlet disposed in fluid communication with the primary impeller; and (d) an annular volute housing communicating with the primary impeller and with an outlet, where the volute housing is axially offset from the impeller plane.