Abstract:
A method of additive manufacturing includes supplying additive manufacturing powder to a build area of an additive manufacturing machine. The method includes fusing a portion of the powder to form a part, and removing a non-fused portion of the powder from the build area into a removable vessel for storing non-fused powder after building a part. The method can include supplying additive manufacturing powder to a build area, fusing a portion of the powder, and removing a non-fused portion of the powder all on a single discrete lot of additive manufacturing powder without mixing lots.
Abstract:
An additive manufacturing build plate system includes a plate body defining a build surface and a rear surface opposite the build surface. A peripheral surface extends between the rear surface and the build surface. At least one gripping feature is defined in the peripheral surface, extending inwardly into the plate body between the build surface and the rear surface.
Abstract:
An electrostatic discharge machining fixture includes a fixture body, two or more electrically conductive face contacts seated in the fixture body, and two or more electrically resistive point contacts seated in the fixture body. The electrically conductive face contacts and the electrically resistive point contacts define a 3-2-1 alignment system to locate an additively manufactured article relative to the fixture body during an electrostatic discharge machining operation. Electrostatic discharge machining arrangements and methods of supporting additively manufactured workpieces during electrostatic discharge machining operations are also described.
Abstract:
An electrostatic discharge machining fixture includes a fixture body, two or more electrically conductive face contacts seated in the fixture body, and two or more electrically resistive point contacts seated in the fixture body. The electrically conductive face contacts and the electrically resistive point contacts define a 3-2-1 alignment system to locate an additively manufactured article relative to the fixture body during an electrostatic discharge machining operation. Electrostatic discharge machining arrangements and methods of supporting additively manufactured workpieces during electrostatic discharge machining operations are also described.
Abstract:
An additive manufacturing build plate system includes a plate body defining a build surface and a rear surface opposite the build surface. A peripheral surface extends between the rear surface and the build surface. At least one gripping feature is defined in the peripheral surface, extending inwardly into the plate body between the build surface and the rear surface.
Abstract:
A plate for a 3D scanning system can include a plate body configured to mount to a 3D scanning system, and a plurality of artifact alignment apertures defined in the plate body arranged in a predetermined pattern to allow a predetermined mounting arrangement of one or more artifacts. The artifact alignment apertures are configured to allow an artifact to be mounted to the plate body.
Abstract:
A system can include a torsion applicator (e.g., a torsion motor and shaft) configured to apply a torque to a test article that is additively built on and attached to a build plate. The system can include at least one twist sensor and at least one torque sensor. A method for determining quality of an additively manufactured article or batch thereof can include torsion testing at least one additively manufactured test article that is built on and attached to a build plate while the at least one test article is still attached to the build plate.
Abstract:
A system for removing powder from an additively manufactured article includes a powder removal mechanism. The powder removal mechanism can include a build plate holder configured to hold a build plate at a distal end thereof. The powder removal mechanism can also include a first actuator that is configured to angle the build plate holder relative to gravity and a second actuator that is configured to rotate the build plate holder about a central axis of the build plate holder.
Abstract:
A method of additive manufacturing includes supplying additive manufacturing powder to a build area of an additive manufacturing machine. The method includes fusing a portion of the powder to form a part, and removing a non-fused portion of the powder from the build area into a removable vessel for storing non-fused powder after building a part. The method can include supplying additive manufacturing powder to a build area, fusing a portion of the powder, and removing a non-fused portion of the powder all on a single discrete lot of additive manufacturing powder without mixing lots.
Abstract:
An additive manufacturing build plate system includes a plate body defining a build surface and a rear surface opposite the build surface. A peripheral surface extends between the rear surface and the build surface. At least one gripping feature is defined in the peripheral surface, extending inwardly into the plate body between the build surface and the rear surface.