Abstract:
An exemplary pressure relief mechanism includes a reservoir having an interior cavity for retaining a fluid and a gas. The reservoir includes an aperture that fluidly connects the interior cavity to an exterior region of the reservoir. A rupture disk is arranged across the aperture in the reservoir and substantially blocks the fluid path through the aperture. The rupture disk is configured to open the fluid path through the aperture when a pressure within the interior cavity generally exceeds a predetermined level.
Abstract:
A circuit for the detection of write errors in a memory with selectable byte addressing. The memory is capable of selectively writing bytes within a memory word by decoding control signals and address signals received from a processor. The decoder and transmission path of the control signals are checked by the processor generating incorrect parity for the bytes which are not to be written. The memory decodes the control signals, checks the parity of the bytes, and generates a write parity error if the decoder selects a byte with incorrect parity to be written. If the memory malfunctions and spuriously writes an unselected byte, this fact will be detected when the unselected byte is read. The memory checks each byte read for parity, and incorrect parity causes the memory to transmit a read memory error to the processor.
Abstract:
A vehicle drivetrain has a first driver, a first clutch to selectively couple the first driver with an engine, an energy storage device coupled to the first driver, a second driver coupled to the energy storage device and connected to a driveshaft, and a second clutch that selectively couples the first and second drivers. In one embodiment, the first clutch is opened and the second clutch is closed during a vehicle operating condition requiring high torque, the first clutch is closed and the second clutch is opened during a transient vehicle operating condition, and the first clutch and the second clutch are closed during a steady-state vehicle operating condition. Additional clutches may be included to reduce energy losses or provide multiple mechanical ratios. The drivers themselves may be pumps, motors, generators, combined pump/motors, or combined motor/generators, making the invention suitable for both hydraulic implementation and electric implementation.
Abstract:
A vehicle drivetrain has a first driver, a first clutch to selectively couple the first driver with an engine, an energy storage device coupled to the first driver, a second driver coupled to the energy storage device and connected to a driveshaft, and a second clutch that selectively couples the first and second drivers. In one embodiment, the first clutch is opened and the second clutch is closed during a vehicle operating condition requiring high torque, the first clutch is closed and the second clutch is opened during a transient vehicle operating condition, and the first clutch and the second clutch are closed during a steady-state vehicle operating condition. Additional clutches may be included to reduce energy losses or provide multiple mechanical ratios. The drivers themselves may be pumps, motors, generators, combined pump/motors, or combined motor/generators, making the invention suitable for both hydraulic implementation and electric implementation.
Abstract:
A hydrostatic steering system of the type including a fluid controller (21) for controlling the flow of fluid from a source (11) to a steering actuator (19) in response to movement of a steering wheel (W). The controller (21) is of the type having a fluid meter (65) including a moveable star member (95), the movement of which corresponds to the flow of fluid to the actuator (19). The controller includes a sensor assembly (125) which senses the movement of the star member (95) and generates an electrical signal (127) representative of the fluid flow through the fluid meter (65). This signal (127) is compared by the vehicle microprocessor (25) to a steered wheel position signal (107), and a command signal (111,113,115) representative of the “error” is generated and transmitted to a valve assembly (23) which communicates compensation fluid into or out of the circuit connected to the steering actuator (19) to try to null the difference between the movement of the fluid meter (65) and that of the steered wheels.
Abstract:
A hydraulic accumulator of the liquid-gas type, comprising a housing (11) defining a chamber (11C), a gas port (30) and a liquid port (19). A gas charging valve (31) is disposed in the gas port (30) to control admission of high pressure gas. A semi-permeable separator (35) is disposed within the housing (11) to separate the internal chamber (11C) into a gas chamber (33) in communication with the gas port (30), and a liquid chamber (21) in communication with the liquid port. A means (41) is within the liquid chamber for collecting gas which passes from the gas chamber (33), through the semi-permeable separator, and into the liquid chamber. Included is a conduit (45) having one end (45a) in communication with the gas collecting means (41), and another end (45b) operably associated with the housing (11,27) to communicate gas from the collecting means (41) out of the liquid chamber.
Abstract:
A fluid controller (17) having a housing (21) and valving including a spool (41) and a follow-up sleeve (43). The spool and sleeve define a central reference plane (RP) with the housing having two annular chambers (61, 62) receiving pressurized fluid from an inlet port (23). One of the annular chambers (61) communicates pressurized fluid to the main flow control orifice (A1) in a left turn, and to the flow amplification orifice (AQ) in a right turn, while the other annular chamber (62) communicates pressurized fluid to the main flow control orifice (A1) in a right turn, and to the flow amplification orifice (AQ) in a left turn. A check valve (103,105) is associated with each of the annular chambers, such that one check valve (103) is an inlet check in a right turn and a reverse flow prevention check while manually steering in a left turn, whereas the other check valve (105) is an inlet check in a left turn and a reverse flow prevention check while manually steering in a right turn. The disclosed arrangement makes it possible to combine wide angle steering architecture with flow amplification capability, without the need to close off the amplification orifice (AQ) during manual steering.
Abstract:
In a processor system having a central processor and secondary support processor mounted on a backplane board, a separate peripheral interrupt bus is provided for each secondary support processor to give full interrupt priority capability to peripheral devices connected to the support processors. The support processors (110, 120) and certain of the system's peripheral interface circuits (102, 104) are connected to the system's central processor (101) via a primary interrupt bus (105) and other peripheral interface circuits (112, 114, 122) are connected to their associated secondary processors (110, 120) via separate interrupt buses (115, 125) all on the same backplane board. The backplane board is divided into an upper section and a lower section and the primary interrupt bus and the interrupt request and acknowledge terminal pins for all circuit boards are in the lower section. The secondary processor boards and interface circuit boards served by the central processor have interrupt request and acknowledge terminal pins connected to the primary interrupt bus in the lower section. The interrupt request and acknowledge terminal pins for any peripheral interface circuit served by a secondary processor are connected to the associated secondary processor via a secondary interrupt bus formed in the upper section of the backplane and conductors extending between the sections.
Abstract:
An exemplary hydraulic reservoir includes a reservoir tank having an interior cavity for retaining a fluid and an aperture fluidly connecting the interior cavity to an exterior region of the reservoir. A cover selectively engages the reservoir tank, and is movable between an open position, wherein the fluid path through the aperture in the reservoir tank is at least partially open, and a closed position, wherein the fluid path through the aperture is substantially closed. The hydraulic reservoir further includes a pressure relief mechanism having at least one pressure responsive fastener for releasably connecting the cover to the reservoir tank. The at least one pressure responsive fastener includes a fastener fixed for concurrent movement with one of the cover and the reservoir tank, and a biasing member operably connecting the fastener to whichever of the cover and reservoir tank is not fixed for concurrent movement with the fastener.
Abstract:
An exemplary hydraulic reservoir includes a reservoir tank having an interior cavity for retaining a fluid and an aperture fluidly connecting the interior cavity to an exterior region of the reservoir. A cover selectively engages the reservoir tank, and is movable between an open position, wherein the fluid path through the aperture in the reservoir tank is at least partially open, and a closed position, wherein the fluid path through the aperture is substantially closed. The hydraulic reservoir further includes a pressure relief mechanism having at least one pressure responsive fastener for releasably connecting the cover to the reservoir tank. The at least one pressure responsive fastener includes a fastener fixed for concurrent movement with one of the cover and the reservoir tank, and a biasing member operably connecting the fastener to whichever of the cover and reservoir tank is not fixed for concurrent movement with the fastener.