Abstract:
An image capture device for an enhanced digital image of a scene including a first digital image sensor for producing a first image and a second digital image sensor for producing a second digital image; wherein the image sensors have multiple photosites, each associated with a color filter; a device for capturing a first and second digital image from the first and second digital image sensors at substantially the same time, wherein the digital images contain pixel locations having values associated to the response of a photosite from the respective image sensor; a processor for aligning the first and second digital images; and the processor producing an enhanced first digital image containing at each pixel location, a pixel value for each of at least three color primaries by using pixel values from the first and second digital images, based on the alignment between the first and second images.
Abstract:
A method for providing a video with perceived depth comprising: capturing a sequence of video images of a scene with a single perspective image capture device; determining a relative position of the image capture device for each of the video images in the sequence of video images; selecting stereo pairs of video images responsive to the determined relative position of the image capture device; and forming a video with perceived depth based on the selected stereo pairs of video images.
Abstract:
An image processing system includes a client device including a limited display having a resolution less than VGA and a bit depth less than 24 bits for displaying a low resolution digital image and image processing operation indicators, an operator interface for user input, a CPU and a memory, the CPU being capable of running a limited client image processing program, and a first communication port; an image processing server for performing an image processing operation on a high definition image stored at the image processing server, for producing a low resolution version of the image for display on the limited display of the client device, and for producing image processing operation indicators indicating a particular image processing operation, the image processing server including a second communication port and being responsive to remote user inputs to produce a processed digital image; and a limited bandwidth mobile communication network connectable with the first and second communication ports for transmitting the low resolution image and the image processing operation indicators from the image processing server to the client device and transmitting remote user inputs from the client device to the image processing server.
Abstract:
An image capture device includes a lens arrangement having a first lens associated with a first digital image sensor and a second lens associated with a second digital image sensor; the first digital image sensor having photosites of a first predetermined color pattern for producing a first digital image; the second digital image sensor having photosites of a different second predetermined color pattern for producing a second digital image. The image capture device also includes a device for causing the lens arrangement to capture a first digital image from the first digital image sensor and a second digital image from the second digital image sensor at substantially the same time; a processor aligning the first and second digital images; and the processor using values of the second image based on the alignment between the first and second images operates on the first digital image to produce the enhanced digital image.
Abstract:
A video image capture device for providing a video with perceived depth comprising: an image sensor for capturing video frames; an optical system for imaging a scene onto the image sensor from a single perspective; a data storage system for storing a sequence of video images captured by the image sensor; a position sensing device for sensing a relative position of the image capture device; a means for storing the sensed relative position of the image capture device in association with stored sequences of video images; a data processor; a memory system storing instructions configured to cause the data processor to provide a video with perceived depth. The video with perceived depth is provided by: selecting stereo pairs of video images responsive to the stored relative position of the image capture device.
Abstract:
A method for providing a video with perceived depth comprising: capturing a sequence of video images of a scene with a single perspective image capture device; determining a relative position of the image capture device for each of the video images in the sequence of video images; selecting stereo pairs of video images responsive to the determined relative position of the image capture device; and forming a video with perceived depth based on the selected stereo pairs of video images.
Abstract:
A video image capture device for providing a video with perceived depth comprising: an image sensor for capturing video frames; an optical system for imaging a scene onto the image sensor from a single perspective; a data storage system for storing a sequence of video images captured by the image sensor; a position sensing device for sensing a relative position of the image capture device; a means for storing the sensed relative position of the image capture device in association with stored sequences of video images; a data processor; a memory system storing instructions configured to cause the data processor to provide a video with perceived depth. The video with perceived depth is provided by: selecting stereo pairs of video images responsive to the stored relative position of the image capture device.