Abstract:
An apparatus, method and system providing for calibration and/or control of a liquid dispensing system is disclosed. The hand-held calibration auditing tool includes a flow meter (36-37) with inlets adapted for quick connection to one or more liquid inputs to a liquid dispensing system (10). A sensor (94-95) having a data output of liquid flow information for a liquid input to the dispensing system (10) is operably connected to a controller (12) to receive the liquid flow information for the liquid input. The controller (12) provides a dilution rate and other liquid flow information for a liquid product input to a dispenser.
Abstract:
Fluid flow meters and methods for measuring different aspects of fluid flow with a non- contact sensor are provided. In some cases a fluid flow gear meter is provided with a fluid chamber that is sealed with a cover portion carrying the non-contact sensor. An optional separation member may be located between the cover portion and the chamber to seal the chamber. In some cases the cover portion and/or separation member are configured to transmit visible light to allow viewing of the fluid chamber, through material selection and/or the presence of viewing cavities within the material. The flow meter is optionally configured to prevent or reduce the transmission of ambient environmental radiation into the flow meter to lessen the likelihood that it may adversely affect an optical non-contact sensor used to detect movement of gears within the chamber.
Abstract:
Sistemas y métodos para determinar un volumen o velocidad de flujo de fluido. El sistema incluye un medidor de desplazamiento positivo que incluye una pluralidad de sensores de no contacto y engranajes configurados para rotar en respuesta al flujo de fluido a través del medidor. Los engranajes pueden incluir áreas detectables que pueden ser detectadas por la pluralidad de sensores de no contacto para determinar una dirección rotacional de los engranajes. La pluralidad de sensores de no contacto puede también ser configurada para generar señales de detección respectivas indicativas de un estado de rotación de los engranajes. El controlador puede estar configurado para recibir las señales de detección, determinar un estado de rotación actual, e incrementar una cuenta rotacional con base en los cambios en el estado de rotación actual. El controlador puede usar la cuenta rotacional para determinar un volumen o velocidad de flujo de fluido.
Abstract:
Systems and methods for determining a flow rate or volume of fluid. The system includes a positive displacement meter including a plurality of non-contact sensors and gears configured to rotate in response to fluid flow through the meter. The gears may include detectable areas that may be sensed by the plurality of non-contact sensors to determine a rotational direction of the gears. The plurality of non-contact sensors may also be configured to generate respective detection signals indicative of a rotation state of the gears. The controller may be configured to receive the detection signals, determine a current rotation state, and increment a rotational count based on the changes in the current rotation state. The controller may use the rotational count to determine a flow rate or volume of fluid.
Abstract:
A fluorescence analysis system may include a sensor head that has a light source configured to emit light into a flow of fluid, a detector configured to detect fluorescent emissions from the flow of fluid, and a temperature sensor. The system may also include a flow chamber that includes a housing defining a cavity into which the sensor head can be inserted. In some examples, the housing is configured such that, when a flow of fluid enters the housing, the flow of fluid divides into at least a major stream passing adjacent the light source and the detector and a minor stream passing adjacent the temperature sensor. Such a flow chamber may direct fluid past different sensors components while inhibiting a build-up of solids particles, the generation of air locks, or other flow issues attendant with continuous or semi-continuous online operation.
Abstract:
Systems and methods for determining a flow rate or volume of fluid. The system includes a positive displacement meter including a plurality of non-contact sensors and gears configured to rotate in response to fluid flow through the meter. The gears may include detectable areas that may be sensed by the plurality of non-contact sensors to determine a rotational direction of the gears. The plurality of non-contact sensors may also be configured to generate respective detection signals indicative of a rotation state of the gears. The controller may be configured to receive the detection signals, determine a current rotation state, and increment a rotational count based on the changes in the current rotation state. The controller may use the rotational count to determine a flow rate or volume of fluid.
Abstract:
Embodiments provide a handheld optical measuring device and method of measuring an optical property of a liquid sample. In some embodiments the optical measuring device includes a handheld controller module having an immersible sensor head and a sampling member including a sample cup and an attachment member that couples the sample cup to the handheld controller module. In some embodiments the attachment member is an elongated rigid member that is hingedly coupled to the controller module, thus providing a folding configuration for enclosing the sensor head with the sample cup during measurements, transportation, and/or storage. In some embodiments the attached sample cup provides a protective shell for the immersible sensor head during use and/or when not in use.
Abstract:
Systems and methods for determining a flow rate or volume of fluid. The system includes a positive displacement meter including a plurality of non-contact sensors and gears configured to rotate in response to fluid flow through the meter. The gears may include detectable areas that may be sensed by the plurality of non-contact sensors to determine a rotational direction of the gears. The plurality of non-contact sensors may also be configured to generate respective detection signals indicative of a rotation state of the gears. The controller may be configured to receive the detection signals, determine a current rotation state, and increment a rotational count based on the changes in the current rotation state. The controller may use the rotational count to determine a flow rate or volume of fluid.
Abstract:
An optical sensor may include a sensor head that has an optical window for directing light into a flow of fluid and/or receiving optical energy from the fluid. The optical sensor may also include a flow chamber that includes a housing defining a cavity into which the sensor head can be inserted. In some examples, the flow chamber includes an inlet port defining a flow nozzle that is configured to direct fluid entering the flow chamber against the optical window of the sensor head. In operation, the force of the incoming fluid impacting the optical window may prevent fouling materials from accumulating on the optical window.
Abstract:
Embodiments provide an optical sensor head and method of making an optical sensor head. In some cases the sensor head can be used as a fluorometric sensor to measure concentrations of substances within a liquid sample of interest. The sensor head includes a light source window and a detector window that transmit light between the sensor head and an analytical area. In some cases the windows include a ball lens positioned within a channel such that the ball lens and the channel create a seal between the interior and exterior of the sensor head.