Abstract:
This invention relates to a method for manufacturing polyesters, in particular, to using a lithium titanyl oxalate as the catalyst for such reaction to provide fast reactions with excellent color properties for the resulting polyester. The present invention provides an improved method of producing polyester by the polycondensation of polyester forming reactants wherein the improvement comprises utilizing, as the polycondensation catalyst, lithium titanyl oxalate. The improved process produces a polyester of improved color verses other titanyl oxalate catalysts and a novel polyester without the presence of antimony.
Abstract:
This invention relates to a method for manufacturing polyesters, in particular, to using a lithium titanyl oxalate as the catalyst for such reaction to provide fast reactions with excellent color properties for the resulting polyester. The present invention provides an improved method of producing polyester by the polycondensation of polyester forming reactants wherein the improvement comprises utilizing, as the polycondensation catalyst, lithium titanyl oxalate. The improved process produces a polyester of improved color verses other titanyl oxalate catalysts and a novel polyester without the presence of antimony.
Abstract:
This invention provides: (a) new organotin functionalized silanes: (b) a solid prepared by chemically bonding organotin functionalized silanes to a solid inorganic support containing surface hydroxy groups: (c) a solid catalyst prepared from said supported organotin functionalized silane; (d) a process for conducting esterification or transesterification, and urethane, urea, silicone, and amino forming reaction utilizing said solid supported catalyst; (e) a process of separating the solid supported catalyst from the reaction products employing ligand - solid separation techniques; (f) reuse of the solid supported catalyst after being separated from the reaction products; (g) a continuous esterification or transesterification reaction or urethane, urea, silicone, or amino forming reaction or urethane, urea, silicone, or amino forming reaction comprising passing reactants for a esterification or transesterification reaction or urethane, urea, silicone, or amino forming reaction or a urethane, urea, silicone, or amino forming reaction or a urethane, urea, silicone, or amino forming reaction reaction through a reactor containing a catalytically effective amount of said solid supported catalyst to form esterification or transesterification reaction or a urethane, urea, silicone, or amino forming reaction or a urethane, urea, silicone, or amino forming reaction products in said reactor and removing said reaction products from said reactor; and (h) esterification or transesterification reaction or a urethane, urea, silicone, or amino forming reaction or urethane, urea, silicone, or amino forming reaction products produced with said solid, supported, tin-containing catalyst and said reaction products containing less than 100ppm tin by weight; and (i) the synthesis of organotin silanes with and without a Lewis acid.