Abstract:
A compressor assembly is provided and may include a compression cylinder and a compression piston disposed within the compression cylinder that compresses a vapor disposed within the compression cylinder from a suction pressure to a discharge pressure. The compressor assembly may additionally include a crankshaft that cycles the compression piston within the compression cylinder and an injection port in fluid communication with the compression cylinder that selectively communicates intermediate-pressure vapor at a pressure between the suction pressure vapor and the discharge pressure vapor to the compression cylinder. The injection port may communicate the intermediate-pressure vapor to the compression cylinder when the compression piston exposes the injection port and may be prevented from communicating the intermediate-pressure vapor to the compression cylinder when the compression piston blocks the injection port.
Abstract:
A system includes a refrigerant compressor including an electric motor, a current sensor that measures current flow to the electric motor, a switching device configured to close and open to allow and prevent current flow to the electric motor, respectively, a maximum continuous current (MCC) device that includes a resistance corresponding to a maximum continuous current for the electric motor, and a motor protection module. The motor protection module communicates with the MCC device, the current sensor, and the switching device and determines a first MCC value for the electric motor as a function of the resistance of the MCC device. The motor protection module also selectively sets a predetermined MCC to the first MCC and controls the switching device based on a comparison of the current flow to the electric motor and the predetermined MCC.
Abstract:
A system includes a sensor and a controller for a refrigeration or HVAC system having a compressor. The sensor senses a temperature of the compressor during operation of the compressor. The controller is configured to determine a rate of change of the temperature relative to time and to perform one or more procedures to protect the compressor based on the rate of change of the temperature. The one or more procedures to protect the compressor include shutting down the compressor, throttling a pressure regulator valve of an evaporator associated with the compressor, adjusting an expansion valve associated with the evaporator, reducing speed of the compressor, and partially or wholly unloading the compressor.
Abstract:
A reciprocating compressor may include a shell, a first cylinder, a plate, a second cylinder, and a piston. The first cylinder may be disposed within the shell and may include a first valve. The plate may be fixed relative to the first cylinder and may include a second valve. The second cylinder may be axially aligned with the first cylinder and may be moveable relative to the first cylinder between first and second positions. The piston may be disposed within the second cylinder and may include a third valve. The piston may reciprocate relative to the first and second cylinders. The piston and the plate may define a first compression chamber therebetween. The piston and the first cylinder may define a second compression chamber therebetween.
Abstract:
An apparatus is provided and may include a compression mechanism, a valve plate associated with the compression mechanism and having at least one port in fluid communication with the compression mechanism, and a manifold disposed adjacent to the valve plate. A cylinder may be formed in the manifold and a piston may be disposed within the manifold and may be movable relative to the manifold between a first position separated from the valve plate and a second position engaging the valve plate. A valve element may be disposed within the piston and may be movable relative to the piston and the manifold. The valve element may be movable between an open position spaced apart from the valve plate and permitting flow through the port and into the compression mechanism and a closed position engaging the valve plate and restricting flow through the port and into the compression mechanism.
Abstract:
A system includes a refrigerant compressor including an electric motor, a current sensor that measures current flow to the electric motor, a switching device configured to close and open to allow and prevent current flow to the electric motor, respectively, a maximum continuous current (MCC) device that includes a resistance corresponding to a maximum continuous current for the electric motor, and a motor protection module. The motor protection module communicates with the MCC device, the current sensor, and the switching device and determines a first MCC value for the electric motor as a function of the resistance of the MCC device. The motor protection module also selectively sets a predetermined MCC to the first MCC and controls the switching device based on a comparison of the current flow to the electric motor and the predetermined MCC.
Abstract:
A compressor assembly is provided and may include a compression cylinder and a compression piston disposed within the compression cylinder that compresses a vapor disposed within the compression cylinder from a suction pressure to a discharge pressure. The compressor assembly may additionally include a crankshaft that cycles the compression piston within the compression cylinder and an injection port in fluid communication with the compression cylinder that selectively communicates intermediate-pressure vapor at a pressure between the suction pressure vapor and the discharge pressure vapor to the compression cylinder. The injection port may communicate the intermediate-pressure vapor to the compression cylinder when the compression piston exposes the injection port and may be prevented from communicating the intermediate-pressure vapor to the compression cylinder when the compression piston blocks the injection port.