Abstract:
Improved optical interferometric modulators have a small waveguide spacing so that the waveguide pair are close to the central electrode, to enhance electro-optic interaction. Asymmetric waveguides with differential indices are used to effectively de-couple the waveguide pair. Multiple sections of asymmetric waveguide pairs with alternating differential indices are used to achieve chirp-free operation. Another version of the device utilizes transmission-line electrode that weave closer to one of the waveguide pair alternately between sections. Another version of the device utilizes waveguide structure that one of the waveguide is closer to the central electrode in alternate section. To improve efficiency further, a DC bias is provided on the outer electrodes configured as an RF-ground but DC-float electrodes. Another improvement is to have a slot is cut underneath the waveguide region to effectively reduce to thickness of the substrate. These improvements lead to higher modulator efficiency.
Abstract:
Electro-optic modulation of multiple phase modulator waveguides with a single electrode is made possible by determining places of equal electric field strength. Substrate extensions support edges of a wide hot electrode and ground electrodes equally spaced from the wide hot electrodes. Waveguides are positioned in the extensions separated from the electrodes by buffer layers. A wide microstrip hot electrode on a buffer layer, wider substrate and ground has multiple waveguides in the substrate below the buffer layer. A thinned substrate has a microstrip hot electrode and spaced coplanar grounds with multiple waveguides located on both sides. Decreasing substrate thickness flattens the electric field strength between the electrodes and allows multiple waveguides located between the central hot and outer ground electrodes. Adjacent waveguides with different asymmetric waveguide index portion staged along their length eliminate cross talk.
Abstract:
A Dual-polarization optical modulator that can be used to modulate light in both polarization states, in which the operating points of each polarization state can be set at any arbitrary point independently from each other. A novel architecture for an optically-controlled Phased-array beam forming system utilizing this unique dual-polarization is proposed to facilitate simple and practical implementation.
Abstract:
Improved optical interferometric modulators have a small waveguide spacing so that the waveguide pair are close to the central electrode, to enhance electro-optic interaction. Asymmetric waveguides with differential indices are used to effectively de-couple the waveguide pair. Multiple sections of asymmetric waveguide pairs with alternating differential indices are used to achieve chirp-free operation. Another version of the device utilizes transmission-line electrode that weave closer to one of the waveguide pair alternately between sections. Another version of the device utilizes waveguide structure that one of the waveguide is closer to the central electrode in alternate section. To improve efficiency further, a DC bias is provided on the outer electrodes configured as an RF-ground but DC-float electrodes. Another improvement is to have a slot is cut underneath the waveguide region to effectively reduce to thickness of the substrate. These improvements lead to higher modulator efficiency.