Abstract:
A manufacturing method for a LED is disclosed. The method includes: providing a substrate with an upper surface; preparing a plurality of LEDs on the upper surface; wherein the upper surface is divided into a plurality of zones, the plurality of LEDs composes a plurality of LED groups, and each of the LED group is disposed in one of the plurality of zones; preparing a testing circuit to electrically connecting the plurality of LEDs in one of the plurality of LED groups; testing the plurality of LEDs in the one of the plurality of LED groups by the testing circuit to obtain photoelectrical characteristics of the plurality of LEDs in the one of the plurality of LED groups; and presenting the photoelectric characteristics in an image.
Abstract:
A light-emitting element, includes a substrate; a first light-emitting stack formed on the substrate, including a triangular upper surface parallel to the substrate, and wherein the triangular upper surface has three sides and three vertexes; a first electrode formed on the first light-emitting stack and located near a first side of the three sides of the triangular upper surface; and a second electrode formed on the first light-emitting stack; including a second electrode pad near a first vertex of the three vertexes; and a second electrode extending part extending from the second electrode pad in two directions, disposed along other two sides of the three sides to surround the first electrode and stopping at the first side to form an opening.
Abstract:
A manufacturing method for an LED includes: providing a substrate having an upper surface divided into a plurality of zones; a LED group formed on each of the zones and wherein: a plurality of the LED groups includes a first LED group; and the LEDs of the first LED group include a defective LED; forming a testing circuit on the substrate to electrically connect the LEDs; testing the first LED group by the testing circuit; recording a position of the defective LED; providing a carrier; and performing one of the following steps by the position of the defective LED: removing the defective LED from the substrate and then transferring the other LEDs in the first LED group to the carrier; transferring the other LEDs other than the defective LED in the first LED group to the carrier; or transferring the LEDs to the carrier and repairing it on the carrier.
Abstract:
A light-emitting element comprises a first semiconductor layer, a first light-emitting structure and a second light-emitting structure on the first semiconductor layer, a first electrode on the first semiconductor layer, a second electrode on the first light-emitting structure, and a first trench between the first light-emitting structure and the second light-emitting structure, exposing the first semiconductor layer, wherein the first trench is devoid of the first electrode and the second electrode formed therein.
Abstract:
A light-emitting device includes a first semiconductor layer having an uppermost surface and a bottommost surface; a first light-emitting structure and a second light-emitting structure formed on the same first semiconductor layer, wherein the first semiconductor layer is continuous; a first trench formed between the first and the second light-emitting structures; and a second electrode formed on the second semiconductor layer and including a second pad and a plurality of second extending parts extending from the second pad; wherein the second pad is between the first and the second light-emitting structures, and the plurality of second extending parts extends to the first and the second light-emitting structures, respectively; wherein the first trench passes through the uppermost surface but does not extend to the bottommost surface; wherein the first trench includes an equal width in a top view.
Abstract:
A light-emitting device includes a first semiconductor layer; a first, a second and a third light-emitting structures formed on the same first semiconductor layer; a first trench between the first and the second light-emitting structures; a second trench between the second and the third light-emitting structures, wherein the first and the second trenches include bottom portions exposing a surface of the first semiconductor layer; a third trench in one of the light-emitting structures, exposing the first semiconductor layer and extending along a direction parallel with the first semiconductor layer; an insulating bridge part in the first and the second trenches, connecting the light-emitting structures; a first electrode in the third trench, electrically connecting to the first semiconductor layer; and a second electrode, including a pad on one of the light-emitting structures and an extending part; wherein the extending part is formed on the insulating bridge part and extends to the light-emitting structures.