Abstract:
Methods and apparatus for automatic frequency control in wireless receivers configured to simultaneously receive multiple carrier signals at distinct radio frequencies are disclosed. An exemplary wireless device comprises at least first and second radio front-end circuits configured to receive first and second wireless communication signals transmitted via first and second radio-frequency carriers at distinct first and second radio frequencies, respectively, a control processor configured to designate a master carrier signal and a slave carrier signal from among the received wireless communication signals, and a frequency error estimation circuit configured to estimate a first receiver frequency error using the received master carrier signal. The control processor is further configured to calculate a second receiver frequency error from the first receiver frequency error, for use in compensating one or more receiver processes performed on the slave carrier signal.
Abstract:
Methods and apparatus that achieve good channel estimation without using unnecessarily complex interpolation filters are described. Adaptive interpolation filtering of a signal in a receiver includes determining at least one correlation function parameter of the channel and determining a filter configuration based on the correlation function parameter. The interpolation may be performed in time, where a Doppler frequency shift can serve as the correlation function parameter, or in frequency, where a root mean square or maximum delay spread can serve as the correlation function parameter, or both. A worst case signal-to-noise ratio may be used in determining the filter configuration, or, optionally, the signal-to-noise ratio can be determined in real time. The filter configuration can be determined in real time or selected from one of a plurality of predetermined configurations having different complexities.
Abstract:
Methods, receivers, and computer program products for defining asymmetric decision regions of a symbol space to interpret transmitted power control commands are disclosed. A method of determining transmitted power control commands at a. receiver can include defining a first decision region of a symbol space associated with a first power control command at the receiver and a second decision region of the symbol space associated with a second power control command at the receiver where the first and second regions are asymmetric with one another. Methods of determining a transmitted power control command during soft handover mode in a wideband code division multiple access communications system are also discussed wherein a first determination of a combined power control command received from a plurality of transmitters can be combined with a second determination of the combined power control command received from the plurality of transmitters to provide a combined power control command. Related circuits are, disclosed as well.
Abstract:
In one aspect, a method and apparatus derive channel quality estimates for given subcarriers in an OFDM signal, based on reference signal (RS) or other known-signal measurements made for another set of subcarriers. In at least one embodiment, a wireless communication apparatus implements a method whereby it is configured for receiving reference information on the first set of subcarriers; generating the first channel quality estimates in the frequency domain, based on the received reference information; computing a power delay profile for the first set of subcarriers; and determining the second channel quality estimates either by extrapolating from the first channel quality estimates or as an average of the first channel quality estimates, depending on a delay spread of the power delay profile.
Abstract:
A method for generating a power control command in a transceiver in a wireless communication system, where method comprises the steps of calculating, at the beginning of a predefined time period, a quality measure reference value (306), generating, repeatedly during the predefined time period; an estimated quality measure value (307) of a signal received at the transceiver; genarting a power control command (313) in dependence of the estimated quality measure value (307) and the quality measure reference value (306); and generating, a number of times during the predefined time period, a modified quality measure reference value (309) from the quality measure reference value (306). The step of generating the power control command comprises comparing the estimated quality measure value (307) with the modified quality measure reference value (309). A power control unit (300), comprising a quality measure estimator (308), a calculator (310), a first controller (303), a second controller (302) and an inner loop element (312), is configured to implement the method.
Abstract:
A method for controlling transmission power from a wireless transceiver. Signal to interference ratios (SIRs) are estimated for a signal that is received from another wireless device. An out-of-sync condition between the wireless transceiver and the other wireless device is identified based on the SIRs. Change of the transmission power from the wireless transceiver is restricted based on the SIRs and when an out-of-sync condition has not been identified.
Abstract:
A method and apparatus for predicting channel estimates for non-received signal frequencies provides knowledge of propagation channel characteristics for non-received frequencies. One embodiment predicts uplink (or downlink) channel estimates based on measured downlink (or uplink) channel estimates, which is advantageous in systems having different uplink and downlink frequencies. Another embodiment predicts channel responses for non-received OFDM sub carrier frequencies based on measuring channel responses for received OFDM sub carrier frequencies. Such processing may comprise, for example, measuring channel responses for received OFDM pilot sub carriers, predicting channel responses at frequency intervals corresponding to pilot sub carrier spacing, and interpolating between those values to predict channel responses at data sub carrier frequencies.
Abstract:
An automatic frequency control (AFC) system in an electronic device is operated by using an AFC-algorithm component to determine a frequency error corresponding to a difference between a frequency of a signal output from a signal generator and a received signal frequency. The frequency error determined by the AFC-algorithm component is multiplied by a scaling factor, which is set to zero after an adjustment has been made to change a frequency of the signal output from the signal generator. The scaling factor is increased from zero to one over time. The scaled frequency error is used to determine whether to adjust the frequency of the signal output from the signal generator.