Abstract:
A method and apparatus for compensating for ISI is described herein. A transmitter (110) and receiver (120) work together to develop pulse shaped OFDM symbols with reduced inter-channel ISI between pulse-shaped OFDM symbols transmitted on different sub-carriers at the same time, and inter-block ISI between pulse-shaped OFDM symbols transmitted on the same sub-carrier at different times. In addition, a pre-compensation element (118) in the transmitter (110) and/or a post-compensation element (128) in the receiver (120) compensate for diagonal ISI occurring between pulse-shaped OFDM symbols transmitted on different sub-carriers at different times.
Abstract:
A receiver and receive processing method described herein improves the accuracy of channel estimates by correcting for the assumption that the Doppler shift (or rate-of-change-of-delay) stays constant for each frequency within a signal bandwidth of a received signal. To that end, a receiver according to the present invention comprises a channel processor having multiple processing units. A first processing unit processes reference values (e.g., pilot signals) received for each of a plurality of frequencies within a signal bandwidth at a plurality of different signal times (or the complex propagation channel coefficients estimated therefrom) to determine a set of complex wave amplitudes either for each of multiple frequencies in the signal bandwidth or for each of the different signal times. A second processing unit subsequently processes the complex wave amplitudes to determine complex scattering coefficients, where each complex scattering coefficient corresponds to a respective scattering object in the wireless communication channel.
Abstract:
The technology in this application solves these problems (and others) and meets the desirable goals identified above (and others). The technology spreads a signal over an available discontinuous spectrum, such as a radio frequency band, so that the spread signal only occupies the non-contiguous spectrum. In this way, CDMA transmission and reception can be used in a fragmented or non-contiguous spectrum that otherwise would not be useable for direct sequence spreading. Spreading over non-contiguous portions of spectrum is preferably performed without producing unacceptable interference in portions of unavailable spectrum located between the allowed spectrum. By avoiding unacceptable interference in portions of unavailable spectrum located between the allowed spectrum, the unavailable spectrum may be used by other users or services.
Abstract:
The present invention uses newly received signal samples to update previously determined scatterer parameters, and therefore, reduces the processing effort required for characterizing scattering objects in a wireless channel. Broadly, the present invention determines a first set of scatterer parameters based on signal samples derived from signals received during one or more previous time interval, and determines an updated set of scatterer parameters for a subsequent time interval based on the first set of scatterer parameters and the new signal samples hi one exemplary embodiment, the receiver uses a continuous sequential update process, e.g., a per-symbol-period inverse Prony process, to update the scatters parameters !n another exemplar embodiment, the receiver uses an integrated Doppler approach to update the scatterer parameters.
Abstract:
A transmitter and a method are described herein that can generate a radio signal with a reduced ratio of peak amplitude to root-mean-square amplitude which helps to improve the transmit efficiency of the transmitter's power amplifier. In addition, a receiver is also described herein that can decode the radio signal.
Abstract:
A method and apparatus for efficiently providing a large volume of channel feedback, e.g.. for OFDM MISO and MIMO systems, is described herein. To that end, a mapping unit in an OFDM transceiver maps channel feedback values, e.g., received reference signal values or channel estimates derived therefrom, on a one-to-one basis to individual transmission subchannels. More particularly, the mapping unit maps a feedback value, e.g., the received reference value or a channel estimate derived therefrom, to a single transmission subchannel of an outgoing OFDM signal. For example, the mapping unit may map the feedback value to an input of a frequency transform unit, such as an inverse discrete Fourier transform unit, to map the feedback value to a single transmission subchannel comprising an OFDM transmission subcarrier. The OFDM transceiver transmits the outgoing OFDM signal to the remote transceiver to provide the feedback value to the remote transceiver.
Abstract:
A method and apparatus for using the same multiplexed radio resource to simultaneously transmit a pilot sequence and an information signal is described herein. After traveling through a multi-path propagation channel (20), a receiver (200) receives the transmitted pilot and information signals, correlates the received signal (R) with the known pilot sequence to determine one or more correlation values, and estimates the multi- path propagation channel based on the correlation values. The receiver uses the channel estimates to process the received signal to remove the pilot sequence from the information signal. By using the same multiplexed radio resource to transmit both the pilot sequence and the user information signal, the present invention enables more radio resources to be allocated to the information signal without compromising pilot- based channel estimation, and provides more regular access to the transmitted pilot sequence at the receiver.
Abstract:
An improved channel estimation technique is provided herein that determines accurate scatterer parameters for the scattering objects in the wireless channel, and extrapolates the scatterer parameters in both time and frequency to characterize the scattering objects for a different time and a different frequency. In one embodiment, a wireless device determines scatterer parameters that characterizes the scattering objects of a reception channel, and extrapolates the scatterer parameters in both time and frequency to predict the scatterer parameters for a future time and frequency, e.g., a future transmission time and frequency.