Abstract:
The present disclosure relates to a method (200) and a network node (100) in a wireless communications network (10). In particular, it relates to a method for controlling a maximum output power of the network node (100) located in the wireless communications network (10), wherein the network node (100) is configured to comprise a Global Navigation Satellite System receiver, GNSS receiver (120). The GNSS receiver (120) is used for receiving signals from the GNSS. The method (200) comprises determining whether a measured GNSS signal transmitted from the GNSS is considered detectable and, if so, determining whether thereceived GNSS signal is received directly from the GNSS (20) or via a GNSS repeater (120). The method further comprises selecting a power control method for controlling the maximum output power of the network node (100), based on a result from the determining.
Abstract:
Disclosed are methods as well as wireless devices and radio network nodes for radio resource management (RRM) in inter-operator time-sharing of a frequency spectrum Fs. In one example embodiment, the same frequency spectrum Fs is allocated to each of a plurality of operators during different time periods such that the same frequency spectrum is shared among all of the plurality of operators.
Abstract:
Method and an apparatus for application of distortion shaping when using Peak-to-Average Ratio (PAR) reduction. The apparatus obtains an input signal. The apparatus applies, on the input signal, the PAR reduction and the distortion shaping to form an output signal. A bandwidth associated with the distortion shaping covers multiple channel bandwidths comprised in the input signal, which multiple channel bandwidths are associated with one or more Radio Access Technologies (RATs). Embodiments herein facilitate the distortion shaping and applicability of PAR reduction, in particular in case one of the RATs is Global System for Mobile Communications (GSM) or similar and/or the input signal is associated with radio communications systems that support multiple RATs.
Abstract:
The present invention relates to a method for sending reserved sub-carriers to a UE for the purpose of reducing peak to average power ratio (PAPR) of the transmitted signal to ensure sufficient quality of the modulated signal to achieve high data rate, including the steps of sending the information related to dynamic activation and deactivation of reserved sub-carriers on a common channel, which is readable for all UEs in idle and in connected mode; dynamically activating the transmission of the reserved sub- carriers in a cell when high modulation quality is to be maintained; dynamically deactivating the transmission of the reserved sub-carriers in a cell when high modulation quality is not required. The invention furthermore relates to a radio base station and a UE relating to said method.
Abstract:
According to certain embodiments, a method in a network node (100 A) for determining spectrum utilization for a plurality of numerologies transmitted within an allocated bandwidth includes selecting one or more of the plurality of numerologies. For each of the one or more selected numerologies, a spectrum utilization is determined. The spectrum utilization is based on the spectrum utilization that would be achieved if the selected numerology was transmitted across the allocated bandwidth. A physical resource block (PRB) allocation is calculated based on the allocated bandwidth and the spectrum utilization.
Abstract:
The present disclosure relates to a method (200) and a network node (100) in a wireless communications network (10). In particular, it relates to a method for controlling a maximum output power of the network node (100) located in the wireless communications network (10), wherein the network node (100) is configured to comprise a Global Navigation Satellite System receiver, GNSS receiver (120). The GNSS receiver (120) is used for receiving signals from the GNSS. The method (200) comprises determining whether a measured GNSS signal transmitted from the GNSS is considered detectable and, if so, determining whether thereceived GNSS signal is received directly from the GNSS (20) or via a GNSS repeater (120). The method further comprises selecting a power control method for controlling the maximum output power of the network node (100), based on a result from the determining.
Abstract:
The present disclosure relates to a method (200) and a network node (100) in a wireless communications network (10). In particular, it relates to a method for controlling a maximum output power of the network node (100) located in the wireless communications network (10), wherein the network node (100) is configured to comprise a Global Navigation Satellite System receiver, GNSS receiver (120). The GNSS receiver (120) is used for receiving signals from the GNSS. The method (200) comprises determining whether a measured GNSS signal transmitted from the GNSS is considered detectable and, if so, determining whether thereceived GNSS signal is received directly from the GNSS (20) or via a GNSS repeater (120). The method further comprises selecting a power control method for controlling the maximum output power of the network node (100), based on a result from the determining.