Abstract:
The present invention is directed to cellular systems and methods for providing a multi-beam antenna configuration (50) within a base station without utilizing duplex filters. The multi-beam antenna configuration (50) of the present invention produces overlaid beams (1, 2, 3, 4) in both the uplink and downlink to cover the same area. Each beam (1, 2, 3, 4) has orthogonally oriented polarization directions (e.g., linear polarized slanted +45E) for the uplink and downlink. Adjacent uplink beams (1, 2, 3, 4) shall also have shifted polarization directions in order to attain polarization diversity between different beams (1, 2, 3, 4). In order to implement this polarization configuration, for each beam (1, 2, 3, 4), there is a selective filter (60) in front of the low noise amplifier (40a) for the uplink, and no duplex filter in front of the amplifier (40b) in the downlink direction.
Abstract:
In a cellular telecommunications network, a method and apparatus is disclosed for providing a substantial gain in downlink C/I by means of antenna pattern downtilt while still maintaining the coverage limiting signal strength in the uplink by the use of different antenna pattern downtilt for the transmit and receive antenna patterns.
Abstract:
A telecommunications system and method is disclosed for allowing a base station to simultaneously transmit signal in several beams (1, 2, 3, 4) of a multi-beam antenna configuration. Antenna pattern control is maintained by employing orthogonal polarization orientation for every other beam (1, 2, 3, 4). For example, the two orthogonal polarization directions can be approximately linear polarization slanted +/- 45 DEG . To be able to transmit simultaneously in an arbitrary combination of more than one beam (1, 2, 3, 4), the BS antenna array includes a separate feeder cable (30c, 30f) for each combination of beams (1, 2, 3, 4) corresponding to a particular polarization, from one feeder (30) per beam (1, 2, 3, 4) to one feeder (30) with all beams (1, 2, 3, 4) of that polarization.
Abstract:
Un método para transmitir simultáneamente señales al interior de una celda de un sistema celular utilizandohaces estrechos y trayectorias o caminos de señal no coherentes, caracterizado por las etapas de: seleccionar una señal de información para un usuario específico nº k, que se ha de transmitir a través de un canalde uso exclusivo o dedicado; usar simultáneamente dos haces estrechos fijos utilizando polarización ortogonal para los dos haces estrechosfijos; dedicar los dos haces estrechos fijos como haz nº 1 y haz nº 2, seleccionar el canal dedicado para que sea el hazestrecho fijo dedicado nº 1 o el haz estrecho fijo dedicado nº 2, basándose en información de dirección / angular /espacial; dividir la transmisión de señal de difusión en dos corrientes de señal de difusión, una para cada uno de los hacesestrechos fijos; combinar las dos corrientes de señal de difusión en unidades combinatorias con los dos haces estrechos fijosdedicados; transmitir dicha señal de información y producir una transmisión de señal de difusión que define una cobertura decelda total, de tal manera que la cobertura de celda total se hace coincidir con la cobertura de los haces estrechosfijos nº 1 y nº 2.
Abstract:
An antenna arrangement and a method for obtaining such an antenna arrangement are disclosed. The antenna arrangement utilizes the beam ports of a beam forming network, e.g. a Butler matrix, in connection with a multi-element radiator antenna for obtaining receive/transmit channels having more antenna beams within a desired coverage. At least one extra signal combiner is utilized for combining at least one beam port of a number of ordinary beam ports with a nonadjacent beam port to form one receive/transmit channel in a number of desired receive/transmit channels. The particular receive/transmit channel uses the at least one extra signal combiner for combining at least one of a number of ordinary beam ports with a nonadjacent beam port normally being terminated, for adapting power and sensitivity distributions for a desired cell coverage or for desired coverage of overlapping cells.
Abstract:
To improve null depths in an antenna pattern of a first polarization, formed with nulls in at least one angular region, a further antenna pattern of a second polarization, substantially orthogonal to the first polarization, is concurrently formed. In the angular region, the amplitudes of the copolar components of the further antenna pattern are substantially equal to the amplitudes of the crosspolar components of the antenna pattern of the first polarization, and the phases of the copolar components of the further antenna pattern of the second polarization are substantially opposite to the phases of the crosspolar component of the first polarization.