Abstract:
A method and apparatus for replacing a transport layer header (30) error detection code and a header compression algorithm error detection code with a one error detection code (CRC+). The replacement error detection code (CRC+) covers both the transport layer header (30) and the transport layer payload (14). Such an arrangement reduces the amount of as-is or uncompressed information transmitted, thereby reducing the required bandwidth. The replacement error detection code (CRC+) is subsequently used to verify the correctness of both the reconstructed header and the payload (14).
Abstract:
A unit (25, 46) performs a compression operation or a decompression operation with respect to information for transmission in packets over a wireless link (36). The transmission over the wireless link is such that the packets may become reordered from a transmission sequence. The compression operation and the decompression operation involve a tradeoff of robustness and reordering depth. The robustness is an indicator of a degree of information loss over the link tolerated by the compression operation and the decompression operation; the reordering depth is a degree of packet reordering tolerated by the compression operation and the decompression operation. The unit dynamically adjusts the tradeoff of the robustness and the reordering depth in accordance with characteristics of the link. In an example embodiment, the information upon which the compression operation and the decompression operation is performed is sequence number information of a packet header.
Abstract:
A network node (60), upon receiving a request (62, 92) indicating that the remote unit (40) seeks access to a multicast/broadcast multimedia service, generates the trigger signal (64) which is applied to the compressor (25) to trigger a lowest compression state of the header compression logic. The trigger signal is generated external to the header compression logic, and prior to generation of an initial packet of the media flow (34) by a multimedia server (21). As both a distinct and combinable aspect, the network node (60) can also generate the trigger signal (64) to trigger a transition to the lowest compression state of the header compression logic upon receipt of an indication of a decompression problem which has occurred at the remote unit (40). The decompression problem can be, for example, a compression initialization failure or compression static context damage. The indication of the decompression problem is preferably an attempt (92) by the remote unit to reinitiate access to the multicast/broadcast multimedia service.
Abstract:
In packet communications that employ header compression/decompression, the computational complexity of checksum generation can be reduced by re-using static checksum information associated with header bits (S) that do not change from header to header. The static checksum information can be used together with information about header bits (T) that do change from header to header, in order to generate a desired checksum (CS). The checksum can then be used to verify a reconstructed header (17) produced from a compressed header by a header decompressor.
Abstract:
In packet communication paths (18) that include header compression, header fields of packets to be communicated are altered. The alteration of the header fields (14) does not disturb their functionality, and its transparent to the header compression scheme of the packet communication path (18). The altered header fields (14) are provided for compression by the header compression scheme, resulting in improved performance of the header compression scheme. Performance improvements can also be achieved in packet communication paths (18) that do not use header compression, by violating the integrity of header fields in packets to be transmitted over the packet communication path (18).
Abstract:
In packet communication paths that include header compression, header fields of packets to be communicated are altered. The alteration of the header fields does not disturb their functionality, and is transparent to the header compression scheme of the packet communication path. The altered header fields are provided for compression by the header compression scheme, resulting in improved performance of the header compression scheme. Performance improvements can also be achieved in packet communication paths that do not use header compression, by violating the integrity of header fields in packets to be transmitted over the packet communication path.
Abstract:
Método para producir una banda multicapa (14) que comprende al menos tres capas de material flexible, tal como papel y material no tejido, encolando las capas, en el que un primer rodillo de transferencia de cola con diseño (5), que tiene un diseño tridimensional de protuberancias (6), se pone en contacto con un primer dispositivo de aplicación de cola (4), y transfiere cola a un primer (1) material flexible en forma de banda (1) en un diseño de encolado que corresponde a la configuración de las protuberancias (6), un segundo material flexible en forma de banda (7) que se pone en contacto con el lado en el que se ha aplicado la cola de dicho primer material flexible en forma de banda (1), un segundo rodillo de transferencia de cola con diseño (14) que tiene un diseño tridimensional de protuberancias (15), se pone en contacto con un segundo dispositivo de aplicación de cola (13), y transfiere cola a un lado externo de los materiales flexibles en forma de banda primero y segundo combinados (1, 7) en un segundo diseño de encolado que corresponde a al configuración de las protuberancias (15) del segundo rodillo de transferencia de cola, un tercer material flexible en forma de banda (16) que se pone en contacto con el lado en el que se ha aplicado cola de dichos primer y segundo materiales flexibles en forma de banda combinados (1, 7) en una pinza de prensado entre un rodillo de laminación con diseño (18) que tiene un diseño tridimensional de protuberancias (19) que corresponde a los diseño de encolado primero y/o segundo, caracterizado porque el diseño de encolado de dicho segundo rodillo de transferencia de cola (14) se aplica, como se observa, a lo ancho de la banda multicapa, alineado sustancialmente con el diseño de encolado aplicado por el primer rodillo de transferencia de cola (5), el rodillo de laminación (18) y el primer y segundo rodillos de transferencia de cola (5, 14) se hacen funcionar en coincidencia exacta entre sí, de modo que al menos tres capas del material flexible en forma de banda (1, 7, 16) se prensan y encolan conjuntamente en un diseño que corresponde a los diseños de encolado alineados.