Abstract:
The present invention relates to a receiver device comprising a receiver (104) adapted to receive radio signals in two frequency bands (FB1, FB2). The radio signals in one of the frequency bands (FB1) constitute communication signals for a radio system (AMPS, NMT) having a certain channel spacing, whereas the radio signals of the second frequency band (FB2) constitutes communication signals for a second radio system (PCS1900, DCS1800, GSM) having a second certain channel spacing. The receiver (104) comprises two inputs (108, 11) each intended for a radio system having different frequency bands and channel spacing. For radio signals occuring on one input (108), mixing is performed from the RF range directly to the baseband frequency range. For radio signals occuring on the second input (108) the mixing from the radio frequency range to the baseband frequency range is carried out through an intermediate frequency range. Further the receiver (104) comprises an output (112) intended to deliver baseband signals for both radio systems. The output (112) is connected to a baseband unit which is common to the radio systems. In the baseband unit, among other things, lowpass filtering, detection and neighbouring channel suppression are performed on the received radio signal that has been mixed down to the baseband frequency range.
Abstract:
The present invention is related to a method and arrangement in a mobile station operating in standby mode and monitoring a first control channel in a first radio communication network. The transmission of messages (703-708) on the first control channel occurs in periodic occurring frames (700). Each frame (700) comprises a first sequence of messages (701), in which no message is addressed to a specific mobile station, and a second sequence of messages (702) that may comprise messages addressed to specific mobile stations. The mobile station determines for at least a first frame (700) a time period during which no part of a message, belonging to the second sequence of messages (702), will be transmitted. Said time period is used by the mobile station to perform actions other than receiving radio signals carrying the first control channel, e.g. entering sleep mode or scanning for control channels in a second radio communication network.
Abstract:
A multiple-mode receiver incorporating direct conversion (processing received signals using intermediate frequencies within the same frequency range as the received signal bandwidth) rather than superheterodyne circuitry, allowing receiver hardware components to be re-used rather than replicated for each band. Various embodiments are disclosed in which low pass filters, mixers, quadrature generators, oscillators, and amplifiers are re-used.
Abstract:
The present invention relates to a radio communication unit (20) comprising radio communication means (23, 25, 27) for communication (reception and/or transmission) in one or more frequency ranges with associated channel spacings. The radio communication means use oscillator signals for channel selection in the frequency ranges. The radio communication unit further comprises a system clock (77) generating a clock signal having a predetermined frequency that is not divisible by all the channel spacings. According to the invention the oscillator signals used in the channel selection are generated by a frequency synthesizer circuit (29) in the form of a fractional-N PLL circuit, said clock signal being fed as a reference frequency signal to the fractional-N PLL circuit. Tile invention also comprises a radio telephones comprising such a radio communication unit and the use of such a radio communication unit.
Abstract:
The present invention relates to a radio communication unit (20) comprising radio communication means (23, 25, 27) for communication (reception and/or transmission) in one or more frequency ranges with associated channel spacings. The radio communication means use oscillator signals for channel selection in the frequency ranges. The radio communication unit further comprises a system clock (77) generating a clock signal having a predetermined frequency that is not divisible by all the channel spacings. According to the invention the oscillator signals used in the channel selection are generated by a frequency synthesizer circuit (29) in the form of a fractional-N PLL circuit, said clock signal being fed as a reference frequency signal to the fractional-N PLL circuit. The invention also comprises a radio telephone comprising such a radio communication unit and the use of such a radio communication unit.
Abstract:
The present invention relates to a receiver device comprising a receiver (104) adapted to receive radio signals in two frequency bands (FB1, FB2). The radio signals in one of the frequency bands (FB1) constitute communication signals for a radio system (AMPS, NMT) having a certain channel spacing, whereas the radio signals of the second frequency band (FB2) constitutes communication signals for a second radio system (PCS1900, DCS1800, GSM) having a second certain channel spacing. The receiver (104) comprises two inputs (108, 11) each intended for a radio system having different frequency bands and channel spacing. For radio signals occurring on one input (108), mixing is performed from the RF range directly to the baseband frequency range. For radio signals occurring on the second input (108) the mixing from the radio frequency range to the baseband frequency range is carried out through an intermediate frequency range. Further the receiver (104) comprises an output (112) intended to deliver baseband signals for both radio systems. The output (112) is connected to a baseband unit which is common to the radio systems. In the baseband unit, among other things, lowpass filtering, detection and neighbouring channel suppression are performed on the received radio signal that has been mixed down to the baseband frequency range.
Abstract:
The present invention is related to a method and arrangement in a mobile station operating in standby mode and monitoring a first control channel in a first radio communication network. The transmission of messages (703-708) on the first control channel occurs in periodic occuring frames (700). Each frame (700) comprises a first sequence of messages (701), in which no message is addressed to a specific mobile station, and a second sequence of messages (702) that may comprise messages addressed to specific mobile stations. The mobile station determines for at least a first frame (700) a time period during which no part of a message, belonging to the second sequence of messages (702), will be transmitted. Said time period is used by the mobile station to perform actions other than receiving radio signals carrying the first control channel, e.g. entering sleep mode or scanning for control channels in a second radio communication network.
Abstract:
The present invention relates to a radio communication unit (20) comprising radio communication means (23, 25, 27) for communication (reception and/or transmission) in one or more frequency ranges with associated channel spacings. The radio communication means use oscillator signals for channel selection in the frequency ranges. The radio communication unit further comprises a system clock (77) generating a clock signal having a predetermined frequency that is not divisible by all the channel spacings. According to the invention the oscillator signals used in the channel selection are generated by a frequency synthesizer circuit (29) in the form of a fractional-N PLL circuit, said clock signal being fed as a reference frequency signal to the fractional-N PLL circuit. The invention also comprises a radio telephone comprising such a radio communication unit and the use of such a radio communication unit.
Abstract:
The present invention relates to a radio communication unit (20) comprising radio communication means (23, 25, 27) for communication (reception and/or transmission) in one or more frequency ranges with associated channel spacings. The radio communication means use oscillator signals for channel selection in the frequency ranges. The radio communication unit further comprises a system clock (77) generating a clock signal having a predetermined frequency that is not divisible by all the channel spacings. According to the invention the oscillator signals used in the channel selection are generated by a frequency synthesizer circuit (29) in the form of a fractional-N PLL circuit, said clock signal being fed as a reference frequency signal to the fractional-N PLL circuit. The invention also comprises a radio telephone comprising such a radio communication unit and the use of such a radio communication unit.
Abstract:
A method and arrangement enabling a mobile station (MS1), operating in standby mode and monitoring a control channel (CC1) in a first radio communication network (NET1), to scan for other radio channels (CC4-CC6) without missing messages, e.g. page messages, on the control channel (CC1) intended for the mobile station (MS1). Each message comprises at least one repeated block of information bits. Upon receipt of a message on the monitored control channel (CC1), the mobile station (MS1) dynamically determines a time period during which the blocks of information conveying the message contains no new information intended for the mobile station (MS1). At least part of said time period is then used for scanning of other radio channels (CC4-CC6).