Abstract:
A sender for a communications system transmits data as packets to a receiver. The receiver transmits quality values to the sender representing the reception quality of packets received with errors. The receiver stores information regarding a number of received data packets, and there is a relay transceiver between the sender and the receiver. Both the relay transceiver and the sender can encode data packets into composite packets, and to transmit composite packets to the receiver. The stored information in the receiver comprises the data in correctly received packets and information regarding the reception quality of packets received with errors and the data of those packets, and the stored information is used by the receiver to decode composite packets, thereby extracting the data in the packets of the composite packets.
Abstract:
A wireless relaying network having a number of network nodes including a designated originating node, at least one relaying node, and at least two receiving nodes. The designated originating node transmits a pilot signal, and the relaying node(s) receives and forwards the pilot signal to the receiving nodes, each of which measures channel quality based on the received pilot signal. At least part of the receiving nodes feed information on the measured channel quality all the way back to the designated originating node, and the originating node then schedules data for transmission to at least one selected node of the receiving nodes based on the received channel quality information. Subsequently, the designated originating node transmits data to the selected receiving node(s) via the same relaying node(s) that forwarded the pilot signal. In this way, multi-user diversity scheduling is introduced to relaying networks that provides significant data rate enhancements.
Abstract:
The invention relates to determination of a link cost employable in route determination and data forwarding in a multihop communication network (1). This link cost is adapted to the particular characteristics of wireless contention-based networks (1), in which both network nodes (10, 20) involved in node-to-node data forwarding block neighbor nodes (30, 40, 50) that have to defer medium access during the data forwarding. The link cost is determined based on the estimated total number of nodes (30, 40, 50) that are blocked if data is forwarded on a wireless link (12) from a node (10) to another node (20). The link cost may also be based on a per bit normalized expected transmit duration for the data forwarding in combination with said estimated number of nodes. Usage of the link cost in route determination minimizes the number of truly blocked nodes in the network (1) and increased the network capacity.