Abstract:
A radio base station (20) comprises an antenna (22); a first power amplifier (24i) configured to receive a first carrier signal; a second power amplifier (242) configured to receive a second carrier signal; and a combiner (30). The combiner (30) is configured to apply a power imbalanced combined signal to the antenna. The power unbalanced combined signal has a power imbalance between a first power level of the first carrier signal and a second power level of the second carrier signal as transmitted from the antenna (22).
Abstract:
Each transmitter/receiver pair of a radio base station is connected via an antenna bus and radio frequency feeder to antenna near parts equipment such as active antennas, boosters and tower mounted amplifiers. Automatic configuration and calibration of the antenna near parts equipment is accomplished by establishing communication between the base station and each of its connected antenna near part components. Each antenna near part component sends its identification to the base station over the antenna bus at power-on. Furthermore, communications selectively sent over the radio frequency feeder are monitored to determine the connectivity between individual transmitter/receiver pairs of the base station and each antenna near parts equipment. These radio frequency feeder communications are further processed to determine calibration data for configuring each antenna near parts equipment for optimal operation.
Abstract:
Apparatus, and an associated method, for calibrating a device responsive to values of a reference signal. The reference signal may be subject to short-term disturbances. In one implementation, a cellular radio base station utilizes a Stratum-2 oscillator to which to phase-lock a base station VCO. Compensation is made for the aging of the Stratum-2 oscillator, thereby to provide a regulation signal causing the VCO to exhibit acceptable short-term and long-term frequency stability characteristics.
Abstract:
Each transmitter/receiver pair of a radio base station is connected via an antenna bus and radio frequency feeder to antenna near parts equipment such as active antennas, boosters and tower mounted amplifiers. Automatic configuration and calibration of the antenna near parts equipment is accomplished by establishing communication between the base station and each of its connected antenna near part components. Each antenna near part component sends its identification to the base station over the antenna bus at power-on. Furthermore, communications selectively sent over the radio frequency feeder are monitored to determine the connectivity between individual transmitter/receiver pairs of the base station and each antenna near parts equipment. These radio frequency feeder communications are further processed to determine calibration data for configuring each antenna near parts equipment for optimal operation.
Abstract:
Apparatus, and an associated method, for calibrating a device responsive to values of a reference signal. The reference signal may be subject to short-term disturbances. In one implementation, a cellular radio base station utilizes a Stratum-2 oscillator to which to phase-lock a base station VCO. Compensation is made for the aging of the Stratum-2 oscillator, thereby to provide a regulation signal causing the VCO to exhibit acceptable short-term and long-term frequency stability characteristics.
Abstract:
Each transmitter/receiver pair of a radio base station is connected via an antenna bus and radio frequency feeder to antenna near parts equipment such as active antennas, boosters and tower mounted amplifiers. Automatic configuration and calibration of the antenna near parts equipment is accomplished by establishing communication between the base station and each of its connected antenna near part components. Each antenna near part component sends its identification to the base station over the antenna bus at power-on. Furthermore, communications selectively sent over the radio frequency feeder are monitored to determine the connectivity between individual transmitter/receiver pairs of the base station and each antenna near parts equipment. These radio frequency feeder communications are further processed to determine calibration data for configuring each antenna near parts equipment for optimal operation.
Abstract:
Each transmitter/receiver pair (12) of a radio base station (10) is connected via an antenna bus (92) and radio frequency feeder (26) to antenna near parts equipment such as active antennas (40), boosters (32) and tower mounted amplifiers (152). Automatic configuration and calibration of the antenna near parts equipment is accomplished by establishing communication between the base station and each of its connected antenna near part components. Each antenna near part component sends its identification (200) to the base station over the antenna bus at power-on. Furthermore, communications selectively sent over the radio frequency feeder are monitored to determine the connectivity between individual transmitter/receiver pairs of the base station and each antenna near parts equipment. These radio frequency feeder communications are further processed to determine (252) calibration data for configuring (254) each antenna near parts equipment for optimal operation.