Abstract:
Data signals transmitted by a plurality of transmitting antennas over a radio channel are demodulated. The method comprises receiving (202) on a plurality of receiving antennas, a data signal and a reference signal, the contents of the reference signal being known a priori to the receiver. The contents of the reference signal are used for calculating (204) an estimated polynomial channel matrix. A polynomial pre-filter matrix is calculated (206, 208) by a decomposition of the estimated polynomial channel matrix into a product of a paraunitary polynomial matrix and an upper triangular polynomial matrix with minimum phase filters on its main diagonal, where the polynomial pre-filter matrix is obtained by calculating the paraconjugate of the paraunitary polynomial matrix. The received data signal is demodulated (212) where the received data signal is multiplied with the calculated polynomial pre-filter matrix.
Abstract:
Methods and devices for generating training symbols to be transmitted in a radio network are provided for a radio system where multiple users are sharing the same transmission slot. The method involves forming a sequence of training symbols by repeating an initial block of training symbols and for each user rotating the repeated block by a user specific rotation angle. A rotated block is periodically extended in both ends.
Abstract:
A radio communications system conducts radio communications using basic physical channels. Each basic physical channel defines a time slot and a radio frequency for transmission. Radio communication is established between a radio base station and multiple UEs over the same basic physical channel. Three or four subchannels are provided in the same basic physical channel to simultaneously support three or four full rate UE communications, seven or eight half rate UE communications, or other equivalent combinations. A first baseband transmitter chain can map full rate data corresponding to first and second full rate UE communications (or equivalent) as adaptive quadrature phase shift keying, AQPSK, signals onto a first and a second of the three subchannels. A second baseband transmitter chain can map full rate data corresponding to a third and/or fourth full rate UE communication (or equivalent) as phase shifted signals onto a third of the three subchannels.
Abstract:
Methods and devices for generating and receiving a training sequence in a radio communication network for a user sharing the same transmission slot with other users is provided where multiple users are multiplexed in the same time slot. A first, original, bit sequence, is repeated and a cyclic prefix and a cyclic postfix is added to the repeated bit sequence thereby forming the training sequence for the user.
Abstract:
It is presented a method for determining a position of a wireless device within a single radio cell served by a plurality of remote radio heads. The method is performed in a position determination node and comprises the steps of: receiving a measured power signature comprising at least two, in time separated, power measurement values of a downlink signal, the measured power signature originating from the wireless device; comparing the measured power signature with a set of reference power signatures, wherein each one of the plurality of remote radio heads is associated with a reference power signature and the reference power signatures differ for at least two of the plurality of remote radio heads; and determining a position in that the wireless device is in the vicinity of one of the at least one remote radio head whose reference power signature best matches the measured power signature.