Abstract:
A flexible and resource-efficient despreading-on-demand (DoD) technique is described where only channels that actually contain data to be despread are despread, and only a single despreading operation need be performed using the actual spreading factor associated with that data. In one example, the data portion of the received signal is buffered for a frame so that an associated transport format, including the actual spreading factor, can be determined before the data is despread. The data is buffered in a memory at a first rate and then subsequently read out at a second rate that is considerably faster than the first rate. The fast data read-out allows despreading at a high rate so that the despread data symbols from the buffered frame are available for further processing shortly after the last sample belonging to the frame has been received.
Abstract:
A flexible and resource-efficient despreading-on-demand (DoD) technique is described where only channels that actually contain data to be despread are despread, and only a single despreading operation need be performed using the actual spreading factor associated with that data. In one example, the data portion of the received signal is buffered for a frame so that an associated transport format, including the actual spreading factor, can be determined before the data is despread. The data is buffered in a memory at a first rate and then subsequently read out at a second rate that is considerably faster than the first rate. The fast data read-out allows despreading at a high rate so that the despread data symbols from the buffered frame are available for further processing shortly after the last sample belonging to the frame has been received.
Abstract:
A method for estimating a plurality of delay values in a multi-path communication signal. Correlation values are generated that correspond to a plurality of delay values associated with the multi-path communication signal. A first power-delay profile (PDP) sequence is produced from the correlation values and is used to estimate a first delay value. A first reference PDP sequence is generated based on a predefined PDP sequence and the first PDP sequence. The first reference PDP sequence is removed from the first PDP sequence so as to remove at least a portion of the contributions to the first PDP sequence from the first delay value, and to provide a second PDP sequence. A second value is estimated based on the second PDP sequence.
Abstract:
A method for estimating a plurality of delay values in a multi-path communication signal. Correlation values are generated that correspond to a plurality of delay values associated with the multi-path communication signal. A first power-delay profile (PDP) sequence is produced from the correlation values and is used to estimate a first delay value. A first reference PDP sequence is generated based on a predefined PDP sequence and the first PDP sequence. The first reference PDP sequence is removed from the first PDP sequence so as to remove at least a portion of the contributions to the first PDP sequence from the first delay value, and to provide a second PDP sequence. A second value is estimated based on the second PDP sequence.
Abstract:
A method for estimating a plurality of delay values in a multi-path communication signal. Correlation values are generated that correspond to a plurality of delay values associated with the multi-path communication signal. A first power-delay profile (PDP) sequence is produced from the correlation values and is used to estimate a first delay value. A first reference PDP sequence is generated based on a predefined PDP sequence and the first PDP sequence. The first reference PDP sequence is removed from the first PDP sequence so as to remove at least a portion of the contributions to the first PDP sequence from the first delay value, and to provide a second PDP sequence. A second value is estimated based on the second PDP sequence.
Abstract:
A method for estimating a plurality of delay values in a multi-path communication signal. Correlation values are generated that correspond to a plurality of delay values associated with the multi-path communication signal. A first power-delay profile (PDP) sequence is produced from the correlation values and is used to estimate a first delay value. A first reference PDP sequence is generated based on a predefined PDP sequence and the first PDP sequence. The first reference PDP sequence is removed from the first PDP sequence so as to remove at least a portion of the contributions to the first PDP sequence from the first delay value, and to provide a second PDP sequence. A second value is estimated based on the second PDP sequence.