Abstract:
A method and apparatus for automatic gain control of a receiver provides compensation of gain control operations for received signal disruptions. In one embodiment, an automatic gain control circuit remembers control state information from a time just before a given disruption, and uses it to reset the automatic gain control circuit at the end of the disruption, or to maintain the automatic gain control circuit during the disruption. The remembering function may be triggered, such by detecting an impending disruption, or done periodically at a high enough update rate that the remembered information is always current with respect to any given disruption. Thus, an exemplary automatic gain control circuit may generate a receiver gain control signal by filtering received signal power measurements, and compensate the generation of that gain control signal by capturing filter state information just prior to signal disruptions. Compensation may comprise resetting or freezing the filter.
Abstract:
By using portions of their reverse pilot signals, mobile stations report relevant state information to supporting radio base stations (RBSs) such that reverse link scheduling decisions may be made quickly at the RBS level rather than by an associated base station controller. Moving reverse link scheduling to the RBS level greatly increases the speed of scheduling decisions, such that a wireless network gains efficiency through greater scheduling responsiveness. In exemplary embodiments, "pilot stealing" for state information transmission is balanced against the network's need for unmodulated pilot signals from the mobile stations to use in channel estimation operations and carrier synchronization. "Stolen" portions of a given mobile station's pilot signal may be used to indicate that, for example, the mobile station has data to send, and that it can increase its reverse data rate. The RBS(s) combine this state information with knowledge of reverse link conditions to make improved scheduling decisions.
Abstract:
A call recovery method uses a multiple access forward call recovery channel to perform simultaneous rescues for multiple mobile stations. Rescue messages, such as handoff direction messages, for different mobile stations are multiplexed onto the call recovery channel for transmission to mobile stations in need of rescue.
Abstract:
A method and apparatus for link supervision determines whether a link signal is present or absent by measuring received energy for that signal. If the measured energy for the signal does not meet a defined energy threshold according to defined evaluation criteria, such as a sufficiency metric, the signal is deemed absent. Applied to wireless communication networks, such supervision may be used to suspend or terminate transmission responsive to detecting the link signal's absence. In an exemplary embodiment for 1xEV-DV (cdma2000 Revision C) wireless networks, a mobile station selectively performs forward link supervision based on measuring the bit energy of power control bits received by the mobile on a dedicated power control sub-channel. If a fundicated channel is assigned to the mobile station, it may perform forward link supervision based on Frame Error Rate (FER) estimations for data received on the fundicated channel rather than the energy-based approach.
Abstract:
A method of reverse link power control for a reverse packet data channel in a wireless communication system allows a mobile station to autonomously change its data transmission rate. The mobile station transmits packet data over a reverse packet data channel having a data rate variant transmit power level that varies based on a transmit data rate on the packet data channel. The mobile station further transmits control signals over a reverse control channel associated with the reverse packet data channel. The transmit power level of he reverse control channel is such that the transmit power level does not vary with the transmit data rate on the packet data channel. The radio base station measures the strength of the received signals on the reverse control channel, compares the measured strength to a power control set point, and generates a power control signal responsive to the comparison of the control signal of the control signal to the power control set point.
Abstract:
A wireless communication network reduces its signaling overhead by recognizing when a mobile station transitions from an inactive state, such as Control Hold or quasiactive, back to an active state by detecting a characteristic change in a reverse link channel associated with the mobile station. Based on such recognition by the network, the mobile station beings sending desired traffic data without need for explicitly negotiating its return to active state, thereby reducing or eliminating higher-layer signaling, e.g. Layer 3 and above, that is otherwise required for return to active state operations. The network might further avoid explicit signaling by, for example, using transmitted reverse link Power Control Bits to indicate that an inactive mobile station should remain inactive. In this manner, inactive mobile stations may be allowed to return to active state without explicit signaling where appropriate, or held in the inactive state if needed, all without need for explicit network signaling. In embodiment, the characteristic change is increased signal energy of R-PITCH or R-TCH due to change to norigator transmissions of pilot signals or start of dat or preamble transmission, resumption of or transmission of a specific pattern in CQI transmissions, data packet transmissions on R-CCH or R-MCH, or a change in symbol modulation.
Abstract:
A method and apparatus for link supervision determines whether a link signal is present or absent by measuring received energy for that signal. If the measured energy for the signal does not meet a defined energy threshold according to defined evaluation criteria, such as a sufficiency metric, the signal is deemed absent. Applied to wireless communication networks, such supervision may be used to suspend or terminate transmission responsive to detecting the link signal's absence. In an exemplary embodiment for 1xEV-DV (cdma2000 Revision C) wireless networks, a mobile station selectively performs forward link supervision based on measuring the bit energy of power control bits received by the mobile on a dedicated power control sub-channel. If a fundicated channel is assigned to the mobile station, it may perform forward link supervision based on Frame Error Rate (FER) estimations for data received on the fundicated channel rather than the energy-based approach.
Abstract:
A method and apparatus provide for setting the initial transmit power of secondary reverse link carriers used by mobile stations in conjunction with primary reverse link carriers. In one or more embodiments, a mobile station sets the initial transmit power of a secondary reverse link carrier relative to the transmit power of the primary reverse link carrier as a function of initialization transmit power information transmitted to the mobile station, which directly or indirectly considers reverse link loading information. Additional considerations may include differences in active sets associated with the primary and secondary reverse link carriers and/or sector switching activity of the mobile station.