Abstract:
Techniques are disclosed for determining which channelization codes are used for an interfering HS-PDSCH transmission without knowing whether a neighboring UE targeted by that transmission has had its 64QAM capability activated by higher layer signaling. The average amplitude is measured for each of several possible groups of channelization codes for each of one or more nearby UEs that might be the targets of interfering HS-PDSCH messages. Testing whether the amplitude is approximately the same across the codes in a possible combination of channelization codes yields a metric value that indicates whether that particular combination of codes is likely to be transmitted to a given UE. A second metric that detects the most likely modulation for possible groups of channelization codes is also calculated. The metrics are combined to determine which combination of channelization codes and modulation scheme is most likely being used for addressing the neighboring UE.
Abstract:
Techniques are disclosed for determining which channelization codes are used for an interfering HS-PDSCH transmission without knowing whether a neighboring UE targeted by that transmission has had its 64QAM capability activated by higher layer signaling. The average amplitude is measured for each of several possible groups of channelization codes for each of one or more nearby UEs that might be the targets of interfering HS-PDSCH messages. Testing whether the amplitude is approximately the same across the codes in a possible combination of channelization codes yields a metric value that indicates whether that particular combination of codes is likely to be transmitted to a given UE. A second metric that detects the most likely modulation for possible groups of channelization codes is also calculated. The metrics are combined to determine which combination of channelization codes and modulation scheme is most likely being used for addressing the neighboring UE.
Abstract:
The placement of processing delays may be adjusted to facilitate signal reception. In an example embodiment, a composite signal having multiple signal images corresponding to multiple reception delays is received. A root-mean-square (RMS) delay spread is ascertained for the multiple reception delays that correspond to the multiple signal images of the composite signal. A set of temporal points is produced responsive to the RMS delay spread. Multiple processing delays are placed based on the set of temporal points. In different example implementations, the set of temporal points (e.g., of a grid) may be produced by adjusting a spacing between temporal points, by adjusting a total number of temporal points in the set, or by changing a center location of the set. The spacing and number of points may be adjusted responsive to the RMS delay spread. The center location may be adjusted responsive to at least one calculated delay.
Abstract:
According to some embodiments, a method performed by a wireless device operating in connected mode for reporting channel quality comprise: determining that aperiodic channel quality reporting has been triggered for the wireless device and transmitting a downlink channel quality report to a network node. A channel quality in the report is represented by a number of repetitions used to receive a channel. In particular embodiments, the number of repetitions comprises a number of repetitions used to receive a machine type communication (MTC)physical downlink control channel (MPDCCH) or a narrowband Internet-of-things (NB-IoT) physical downlink control channel (NPDCCH).
Abstract:
Embodiments herein relate to a method performed by a wireless device (10) for enabling the wireless device (10) to perform RLM of a cell (11) of a network node (12) in a wireless communication network (1). The wireless device (10) sends to a network node (12) serving the wireless device (10), e.g. the network node providing the cell, an indication indicating at least one recommended repetition level and/or recommended aggregation level, of at least one radio signal and/or control channel.
Abstract:
According to some embodiments, a method performed by a wireless device for lean carrier operation comprises obtaining lean carrier assistance information (LCAI). The LCAI comprises one or more of the following sets of information for a carrier frequency: reference signal (RS) muting pattern information, wherein the RS muting pattern information provides a RS muting pattern used in one or more cells on the carrier frequency; and coverage area information, wherein the coverage area information indicates a coverage area where the RS muting is applied or is expected to be applied on one or more cells operating on the carrier frequency. The method further comprises performing one or more radio operational tasks using the LCAI.
Abstract:
A set of channelization codes to be monitored is divided into two groups. The first group includes those codes for which an associated symbol modulation and transmit-diversity scheme is known. In the second group are those codes that are characterized by an unknown symbol modulation or unknown transmit-diversity scheme. The quality of the transmission of each code is then evaluated, using a metric. The metric in turn is used to determine whether the code should be used in estimating the covariance matrix by correlating the RAKE data corresponding to the code (i.e., by computing a correlation matrix for the code) or by first subtracting the channel estimates from the channel samples before correlation (i.e., by computing a covariance matrix for the code). An impairment covariance matrix is computed from the covariance matrices and correlation matrices so computed.
Abstract:
A mobile receiver having a multi-mode interference suppression function and a way to estimate its speed utilizes a parametric approach to interference suppression at high speeds, and a nonparametric approach at low speeds. In particular, if the mobile receiver is currently operating in a nonparametric mode and its speed exceeds a first predetermined threshold, the mobile receiver switches to a parametric mode. Conversely, if the mobile receiver is currently in parametric mode and its speed is less than a second predetermined threshold, the mobile receiver switches to nonparametric mode. In one embodiment, the speed may be estimated by a Doppler frequency in the received signal, and the thresholds are Doppler frequencies. In one embodiment, the first and second thresholds are different, creating a hysteresis in the mode switching.
Abstract:
Métodos y aparatos para comunicar a un dispositivo inalámbrico (WD) un desplazamiento de frecuencia de DL a UL (o cambio de frecuencia) que puede ser necesario aplicar. Por ejemplo, se provee un método implementado en un dispositivo inalámbrico (WD). El método comprende: recibir del nodo de red una indicación de un desplazamiento de frecuencia; y aplicar el desplazamiento de frecuencia recibido; donde el WD está configurado para operar en una portadora de Internet de las cosas de banda angosta (NB-IoT) de una portadora Nueva Radio (NR).