Abstract:
The invention discloses a beamforming method for polarized antenna array consisting of a plurality of antenna elements, applied to single layer beamforming or dual layer beamforming, which includes the steps: determining (201) first beamforming weights for phase compensation among the antenna elements within each polarization direction; determining (202) second beamforming weights for phase compensation between equivalent channels of two polarization directions; and calculating (203) hybrid beamforming weights as product of the first beamforming weights and the second beamforming weights. A beamforming apparatus for polarized antenna array is also provided in the invention as well as a radio communication device and a system thereof. With the invention, the single-layer and dual-layer beamforming weights are determined for the cross-polarized antenna array without requiring full channel knowledge or the aid of PMI. Computation complexity is lowered and full power amplifier utilization can be achieved.
Abstract:
A hybrid combining method in a receiver is provided, and the method includes that wideband combining, e.g. using a maximum ratio combining (MRC) or an interference rejection combing (IRC) process, to combine signals distributed over a first plurality of subcarrier frequencies from antennas in the same polarization direction is performed, resulting in a combined signal for each polarization direction that is distributed over a smaller number of subcarrier frequencies, then a two-port narrowband IRC is done of these wideband combined signals for the two polarization directions, resulting in a diversity combined signal.
Abstract:
There is provided a method of processing signals in a network node or user equipment in a communication network, the signals comprising data symbols for a plurality of users, and wherein joint or multi-user detection is used to determine the data symbols in the received signals, the method comprising estimating a signal quality from the received signals prior to performing the joint or multi-user detection.
Abstract:
método de formação de feixe, aparelho para conjunto de antenas polarizadas e dispositivo de comunicação de rádio e sistema para o mesmo. a invenção revela um método de formação de feixe para conjunto de antena polarizada consistindo em uma pluralidade de elementos de antena, aplicados em formação de feixe de camada única ou formação de feixe de camada dual, que inclui as etapas de: determinar (201) primeiros pesos de formação de feixe para compreensão de fase entre os elementos de antena em cada direção de polarização determinar (202) segundos pesos de formação de feixe para compensação de fase entre canais equivalentes de duas direções de polarização; e calcular (203) pesos de formação de feixe híbridos como produto dos primeiros pesos de formação de feixe e segundos pesos de formação de feixe. um aparelho de formação de feixe para conjunto de antena polarizada também é fornecido na invenção bem como um dispositivo de comunicação de rádio e um sistema do mesmo. com a invenção, os pesos de formação de feixe de camada única e camada dual são determinados para o conjunto de antena polarizada cruzada sem exigir conhecimento total de canal ou auxílio de pmi. a complexidade de computação é diminuída e utilização de ampplificador de potência pode ser obtida.
Abstract:
A noisy frequency-domain channel estimate (Hin) enhancer (24) includes an over-sampler (30) configured to transform the noisy frequency-domain channel estimate (Hin ) into a time-domain channel estimate (h) that is virtually over-sampled by an integer factor m. The over-sampler (30) is connected to a de-interleaver (32) configured to divide the time-domain channel estimate (h) into m de-interleaved sub-vectors (hi). The de-interleaver (32) is connected to a suppressor (34) configured to suppress noisy taps from each de-interleaved sub-vectors (hi) to form m noise suppressed sub-vectors (h'i). The suppressor (34) is connected to a selector (36) configured to select a noise suppressed sub-vector (h'i0) associated with a highest signal-to-noise ratio (γi). The selector (36) is connected to a discrete Fourier transformer (38) configured to transform the selected noise suppressed sub-vector (h'i0) into a noise suppressed preliminary frequency-domain channel estimate ( H'). The discrete Fourier transformer (38) is connected to a phase-shifter (40) configured to phase- adjust the taps of the noise suppressed preliminary frequency-domain channel estimate (H') to form an enhanced frequency-domain channel estimate (Hout).