Abstract:
The invention broadly encompasses energy storage devices or systems and more specifically relates to methods of enhancing the performance of electrochemical double layer capacitors (EDLCs), or supercapacitors or ultracapacitors, and devices formed therefrom. In some embodiments, the invention relates generally to energy storage devices, such as EDLCs that use phosphonium-based electrolytes and methods for treating such devices to enhance their performance and operation. Embodiments of the invention further encompass conventional ammonium based electrolytes and phosphonium-based electrolytes comprised of phosphonium ionic liquids, salts, and compositions employed in such EDLCs.
Abstract:
Synthesis of molecules and salts is disclosed having low average symmetry and their use in many applications, including but not limited to: as electrolytes in electronic devices such as memory devices including static, permanent and dynamic random access memory, as electrolytes in energy storage devices such as batteries, electrochemical double layer capacitors (EDLCs) or supercapacitors or ultracapacitors, electrolytic capacitors, as electrolytes in dye-sensitized solar cells (DSSCs), as electrolytes in fuel cells, as a heat transfer medium, high temperature reaction and/or extraction media, among other applications. In particular, synthesis methods and processes to form molecules and salts having low average symmetry using mixed Grignard reagents are disclosed.