Abstract:
An actuator system has a power source, an output member, a first fluidic coupling and a second fluidic coupling. The fluidic couplings generate a variable amount of torque transmission. A transmission operatively couples the fluidic couplings to the power source and to the output member in at least first load path and a second load path, the first load path and the second load path being parallel to one another, the first load path including the first fluidic coupling, the second load path including the second fluidic coupling. The fluidic couplings are operable for torque from the power source to be transmitted solely via the first load path, solely via the second load path, and cumulatively via the first load path and the second load path.
Abstract:
L'invention concerne un dispositif destiné à être positionné à proximité d'une articulation entre deux parties, le dispositif comprenant une première interface (11) portée par une première des deux parties et une deuxième interface (22) portée par une deuxième des deux parties, le dispositif comprenant au moins une connexion entre la première interface et la deuxième interface. Selon l'invention, la connexion comporte deux vérins (31, 32) montés en parallèle de manière que chaque vérin soit lié par sa tige de sortie à la première interface et par son corps à la deuxième interface, le déplacement simultané des deux tiges de sortie (35, 36) permettant en service de bouger la deuxième partie de l'articulation par rapport à la première partie de l'articulation. L'invention concerne également un système comprenant un tel dispositif et un bloc d'alimentation en fluide dudit dispositif.
Abstract:
A system comprises magnetorheological fluid clutch apparatuses, each magnetorheological fluid clutch apparatus including a first rotor having at least one first shear surface, a second rotor rotating about a common axis with the first rotor, the second rotor having at least one second shear surface opposite the at least one first shear surface, the shear surfaces separated by at least one annular space, magnetorheological (MR) fluid in an MR fluid chamber including the at least one annular space, the MR fluid configured to generate a variable amount of torque transmission between the rotors when subjected to a magnetic field, and coil(s) actuatable to deliver a magnetic field through the MR fluid such that each said magnetorheological fluid clutch apparatus is actuatable to selectively transmit actuation by controlled slippage of the rotors with respect to one another. The MR fluid chambers of the second magnetorheological fluid clutch apparatuses are in fluid communication for the MR fluid to circulate between the magnetorheological fluid clutch apparatuses.
Abstract:
A braking control apparatus comprises at least one torque source. At least one magnetorheological (MR) fluid clutch apparatus having an input coupled to the at least one torque source to receive torque from the torque source, the MR fluid clutch apparatus controllable to transmit a variable amount of torque via an output thereof. A modulation interface couples the output of the at least one MR fluid clutch apparatus to a braking power transmission of a brake system. At least one sensor provides information indicative of a braking state of the load. A processing unit receives the information indicative of the braking state of the load and for outputting a signal to control the at least one MR fluid clutch apparatus in exerting a desired force on the braking power transmission to assist in braking the load. A method for assisting a manually-actuated braking of a vehicle is also provided.
Abstract:
A magnetorheological fluid clutch apparatus comprises a stator having at least an annular wall; a first rotor rotatably mounted to the stator, the first rotor having at least one first shear surface; a second rotor rotatably mounted to the stator for rotating about a common axis with the first rotor, the second rotor having at least one second shear surface opposite the at least one first shear surface, the shear surfaces separated by at least one annular space. A magnetorheological (MR) fluid is in an MR fluid chamber including the at least one annular space, the MR fluid configured to generate a variable amount of torque transmission between the rotors when subjected to a magnetic field. An inner magnetic core and an outer magnetic core with an annular cavity therebetween receive the annular wall of the stator, the inner magnetic core and the outer magnetic core connected to at least one of the rotors to rotate therewith so as to be rotatably mounted to the stator. Outer and inner fluid gaps are between the inner magnetic core and the annular wall, and between the outer magnetic core and the annular wall, the outer and inner fluid gaps filled with at least one fluid. At least one coil is supported by the annular wall and actuatable to deliver a magnetic field through the MR fluid, the magnetic field following a path comprising the annular wall, the outer fluid gap, the outer magnetic core, the at least one first shear surface and the at least one second shear surface, the inner magnetic core and the inner fluid gap, wherein one of the rotors is adapted to be coupled to a power input and the other of the rotors is adapted to be connected to an output whereby actuation of the at least one coil results in a variation of torque transmission between the rotors.
Abstract:
A magnetorheological fluid clutch apparatus comprises an input(s) having an input shear surface(s). An output(s) is rotatably mounted about the input for rotating about a common axis with the input, the output(s) having output shear surface(s), the input shear surface and the output shear surface separated annular space(s). with magnetorheological fluid, configured to generate a variable amount of torque transmission between the sets of input rotor and output rotor when subjected to a magnetic field. An electromagnet(s) delivers a magnetic field through the magnetorheological fluid, the electromagnet configured to vary the strength of the magnetic field, whereby actuation of the electromagnet results in torque transmission from the input to the output. A member(s) defining at least one of the shear surfaces is made of a low-permeability material.
Abstract:
A control system for controlling movements of an end effector connected to a clutch output of at least two magnetorheological (MR) fluid clutch apparatus, the control system comprises a clutch driver configured to drive the at least two MR fluid clutch apparatuses between at least a controlled slippage mode, in which slippage between a clutch input and the clutch output of the MR fluid clutch apparatuses varies, and a combined mode, in which said slippage between the clutch input and the clutch output is maintained below a given threshold simultaneously for both of the MR fluid clutch apparatuses, the two clutch outputs resisting movement of the end effector in the same direction. A motor driver is configured to control a motor output of at least one motor, the motor output coupled to at least one clutch input. A mode selector module is configured to receive signals representative of at least one movement parameter of the end effector, the mode selector module selecting a mode between at least the controlled slippage mode and the combined mode of the clutch driver based on the signals, and switching the selected mode based on the signals. A movement controller controls the clutch driver and the motor driver to displace the end effector based on at least one of the selected mode and on commanded movements of the end effector for the end effector to achieve the commanded movements.
Abstract:
A system for controlling a tension of a tether between an object and a load tethered to the object comprises magnetorheological (MR) fluid actuator unit(s) including at least one torque source and at least one MR fluid clutch apparatus coupled to the at least one torque source to receive torque from the at least one torque source, the MR fluid clutch apparatus controllable to transmit a variable amount of torque via an output of the MR fluid actuator unit. A tensioning member is connected to the output so as to be pulled by the output member upon actuation of the magnetorheological fluid clutch apparatus, a free end of the tensioning member adapted to exert a pulling action when being pulled by the output member. Sensor(s) provide information indicative of a relation between the object and the load tethered to the object. A controller controls the at least one MR fluid clutch apparatus in exerting the pulling action based on said information.
Abstract:
A control system is provided for controlling movements of an end effector connected to a clutch output of at least one magnetorheological (MR) fluid clutch apparatus. A clutch driver is configured to drive the at least one MR fluid clutch apparatus between a controlled slippage mode, in which slippage between a clutch input and the clutch output of the MR fluid clutch apparatus varies, and a lock mode, in which said slippage between the clutch input and the clutch output is maintained below a given threshold, the clutch output transmitting movement to the end effector. A motor driver is configured to control a motor output of at least one motor, the motor output coupled to the clutch input. A mode selector module is configured to receive signals representative of at least one movement parameter of the end effector, the mode selector module selecting a mode between the controlled slippage mode and the lock mode of the clutch driver based on the signals, and switching the selected mode based on the signals. A movement controller controls the clutch driver and the motor driver to displace the end effector based on at least one of the selected mode and on commanded movements of the end effector for the end effector to achieve the commanded movements. A method for controlling movements of an end effector connected to the MR fluid clutch apparatus is also provided.
Abstract:
A magnetorheological (MR) actuator device comprising two or more MR actuator units. Each of the MR actuator units may include a motor, an MR fluid clutch apparatus operatively coupled to the motor to receive torque from the motor, the MR fluid clutch apparatus operable to generate a variable amount of torque transmission when subjected to a magnetic field. An output member is provided, a transmission operatively coupling the at least two MR actuator units to the output member, for the output member to receive torque from the MR actuator units. A controller for controlling the two or more MR actuator units to drive the output member, the controller driving the output member in at least an antagonistic mode in which the MR actuator units transmit torque in opposite directions to the output member. A collaborative mode may be provided to combined the torque of the two or more MR actuator units in a common direction on the output member.