NVH management in diesel CDA modes

    公开(公告)号:US11371450B2

    公开(公告)日:2022-06-28

    申请号:US16435458

    申请日:2019-06-07

    Abstract: A method for entering and exiting cylinder deactivation modes in a diesel engine, comprises monitoring an engine speed from an idle engine speed to a governed engine speed and monitoring an engine load. If the monitored engine speed is the idle engine speed up to the governed engine speed, and if the engine load is less than the predetermined low load condition, then implementation of a cylinder deactivation mode is restricted to one of a 2 cylinder deactivation mode, a 3 cylinder deactivation mode, or a 4 cylinder deactivation mode. A cylinder deactivation mode is selected for engine operation among the 2 cylinder deactivation mode, the 3 cylinder deactivation mode, and the 4 cylinder deactivation mode to operate the engine at an effective frequency that avoids two resonant frequencies of the vehicle and to operate the engine below a torsional vibration limit.

    Rocker arm assembly for engine braking

    公开(公告)号:US10858963B2

    公开(公告)日:2020-12-08

    申请号:US16597319

    申请日:2019-10-09

    Abstract: An exhaust valve rocker arm assembly selectively opening first and second exhaust valves includes an exhaust rocker arm, an engagement capsule, a valve bridge operably associated with the rocker arm and including a main body, and a hydraulic actuator assembly disposed at least partially within an aperture formed within the main body. The hydraulic actuator assembly includes a first piston body and a second piston body disposed at least partially within the aperture formed in the main body. The exhaust rocker arm is configured to engage the valve bridge main body to engage the first exhaust valve, and the engagement capsule is configured to engage the hydraulic actuator to engage the second exhaust valve.

    Valve train carrier assembly
    4.
    发明授权

    公开(公告)号:US10774694B2

    公开(公告)日:2020-09-15

    申请号:US16534403

    申请日:2019-08-07

    Abstract: A valve train assembly includes an intake rocker arm, an exhaust rocker arm, a carrier configured to couple to a cylinder block and operably associated with the intake rocker arm and the exhaust rocker arm, the carrier including a first aperture, and a cylinder deactivation (CDA) capsule disposed within the first aperture. The CDA capsule is configured to move between a latched condition that transfers motion from a push rod to one of the intake rocker arm and the exhaust rocker arm, and an unlatched condition that absorbs motion from the push rod and does not transfer the motion to the intake rocker arm or the exhaust rocker arm.

    Aftertreatment heater power electronics

    公开(公告)号:US12152523B2

    公开(公告)日:2024-11-26

    申请号:US17645626

    申请日:2021-12-22

    Abstract: Systems include a prime mover that generates power for a mobile vehicle; a power converter that receives a portion of the generated power, and provides configured electrical power to an aftertreatment heater device configured to selectively heat an exhaust fluid of the prime mover; at least one aftertreatment component positioned downstream of the aftertreatment heater device, and configured to treat a constituent of the exhaust fluid; and a controller including an operating conditions circuit structured to interpret an operating parameter of one of the power converter, the aftertreatment heater device, the prime mover, or the exhaust fluid; a heater management circuit that determines a heating power value in response to the operating parameter; and a heater control circuit that provides a heating command in response to the heating power value; and wherein the power converter is responsive to the heating command to heat the exhaust fluid of the prime mover.

    Diesel engine cylinder deactivation modes

    公开(公告)号:US12104542B2

    公开(公告)日:2024-10-01

    申请号:US17413775

    申请日:2019-12-13

    Abstract: When selecting cylinders of a multi-cylinder diesel engine in an engine system for cylinder deactivation (CDA), a method can comprise designating a first resonance around a first periodic frequency output of the engine system as a primary boundary and designating a second resonance around a second periodic frequency output of the engine system as a secondary boundary. Selecting cylinders can comprise selecting one of half, one third, or two thirds of the multiple cylinders for CDA while firing the remaining multiple cylinders. The selection can be made so that the periodic frequency output of the engine is between the primary and secondary boundaries. A compact periodic frequency band can be implemented to further restrict the selection of cylinders for CDA. The first periodic frequency output can be about 15 Hertz+/−1.5 Hertz and the second periodic frequency output can be between 30-40 Hertz+/−1.5 Hertz.

    Transmission control with cylinder deactivation

    公开(公告)号:US11578673B2

    公开(公告)日:2023-02-14

    申请号:US17537309

    申请日:2021-11-29

    Abstract: A method for controlling vehicle speed comprises selecting an engine speed profile for a vehicle. Road grade data is received and processed to determine a road grade for the vehicle. Vehicle speed data is received and processed to determine a vehicle speed for the vehicle. A cylinder deactivation mode for a valvetrain of a multi-cylinder engine of the vehicle is selected. The cylinder deactivation mode comprises deactivating one or more intake valve, exhaust valve, and fuel injection for one or more cylinder of the multi-cylinder engine. The selected cylinder deactivation mode provides a controlled deviation from the selected engine speed profile at the road grade and vehicle speed.

    Friction mitigation in cylinder deactivation

    公开(公告)号:US11578672B2

    公开(公告)日:2023-02-14

    申请号:US16326699

    申请日:2017-08-17

    Abstract: A friction loss management system for an engine, comprises a combustion engine comprising a crankshaft and a plurality of cylinders, a reciprocating piston assembly connected to the crankshaft, a fuel injector, an intake valve, and an exhaust valve. A control unit comprises at least one set of control algorithms configured to receive engine power demand data, and determine a number of cylinders of the plurality of cylinders for deactivation based on the received engine power demand data and further based on sensed or stored friction values for the plurality of cylinders. Determining the number of cylinders of for deactivation minimizes friction between the plurality of cylinders and their respective reciprocating piston assembly by selecting a cylinder combination of active cylinders and deactivated cylinders with the lowest total friction while meeting engine power demand. All cylinders can be deactivated for purposes of coasting or controlling speed during platooning.

    DIESEL ENGINE CYLINDER DEACTIVATION MODES

    公开(公告)号:US20220065178A1

    公开(公告)日:2022-03-03

    申请号:US17413775

    申请日:2019-12-13

    Abstract: When selecting cylinders of a multi-cylinder diesel engine in an engine system for cylinder deactivation (CDA), a method can comprise designating a first resonance around a first periodic frequency output of the engine system as a primary boundary and designating a second resonance around a second periodic frequency output of the engine system as a secondary boundary. Selecting cylinders can comprise selecting one of half, one third, or two thirds of the multiple cylinders for CDA while firing the remaining multiple cylinders. The selection can be made so that the periodic frequency output of the engine is between the primary and secondary boundaries. A compact periodic frequency band can be implemented to further restrict the selection of cylinders for CDA. The first periodic frequency output can be about 15 Hertz+/−1.5 Hertz and the second periodic frequency output can be between 30-40 Hertz+/−1.5 Hertz.

    Type II Valvetrains to Enable Variable Valve Actuation

    公开(公告)号:US20210324770A1

    公开(公告)日:2021-10-21

    申请号:US17260004

    申请日:2019-07-12

    Abstract: A valvetrain for a type II engine comprises a valve bridge, a switching rocker arm, a center capsule, a first auxiliary rocker arm, and a first auxiliary capsule. The selectively switching rocker arm is configured to switch configurations to transfer a first valve actuation profile from a first overhead cam lobe to the valve bridge center point and to transfer a second valve actuation profile from a second overhead cam lobe to the center point. The center capsule is configured to switch between an active state and a lost motion state. The first auxiliary rocker arm is configured to transfer a first auxiliary valve actuation profile from a third overhead cam lobe to the valve bridge first valve mounting area. The valvetrain can further comprise a second auxiliary rocker arm and a second auxiliary capsule.

Patent Agency Ranking