Abstract:
A method of cleaning a cooling water system is disclosed. The method may include contacting a cooling tower fill with a composition that may include a surfactant and an additive selected from an oxidizing agent, an acid, and any combination thereof when the cooling water system is off-line. The method may include contacting a deposit in the cooling tower fill with the composition. The oxidizing agent may be hydrogen peroxide, sodium hypochlorite, chlorine dioxide, ozone, sodium hypobromite, sodium or potassium permanganate, or any combination thereof. The surfactant may include a C8-C10 alkyl polyglycoside and a C10-C18 alkyl polyglycoside.
Abstract:
Provided are methods of inhibiting microbial fouling and improving efficiency in biocide dosing in an industrial process containing an aqueous liquid having a biocide demand. In exemplary embodiments, the methods comprise treating an aqueous liquid having a biocide demand with a biocide, monitoring the biocide demand of the aqueous liquid, and filtering a stream of the aqueous liquid. The filtering may be performed in a full-flow or side stream manner.
Abstract:
The invention provides methods and compositions for the protection of a membrane from both biofouling and from damage caused by a biocide. The invention utilizes PAA as both a biocide and as a reducing agent for other oxidizing biocides. This is especially beneficial because without the invention one would be forced to choose between preventing membrane biofouling or preventing membrane damage from oxidizing biocides.
Abstract:
Biocides produced in situ for various applications of use are disclosed. Methods of generating and feeding thereof for various applications of use are disclosed according to the invention. In an aspect, oxidizing, non-chlorinated halogenated biocides are provided.
Abstract:
The present disclosure generally relates to washing or rinsing of packages, containers, and associated lids. More particularly, the disclosure pertains to a washing or rinsing apparatus for cleaning packaging for biocides. A rinsing apparatus is that includes a housing, which has a wash section and a drain section. The rinsing apparatus includes a stop plate disposed within the housing that divides the wash section from the drain section. The apparatus includes a solution distribution nozzle disposed within the wash section of the housing.
Abstract:
A system for dissolving solid chemical may include three reservoirs positioned in a vertically stacked arrangement. A solid chemical reservoir configured to receive solid chemical to be dissolved may be nested in a solution generator reservoir into which water is introduced to erode the solid chemical. A dissolved chemical reservoir can be positioned under the solid chemical reservoir and the solution generator reservoir. The dissolved chemical reservoir can store solution generated using the system. In some examples, a recirculation circuit is used to recirculate water introduced into the solution generator reservoir until a solution having a target concentration of the chemical being dissolved is achieved. The recirculation circuit may include a recirculation line having an outlet aimed at the bottom wall of the solid chemical reservoir.
Abstract:
The present disclosure generally relates to washing or rinsing of packages, containers, and associated lids. More particularly, the disclosure pertains to a washing or rinsing apparatus for cleaning packaging for biocides. A rinsing apparatus is that includes a housing, which has a wash section and a drain section. The rinsing apparatus includes a stop plate disposed within the housing that divides the wash section from the drain section. The apparatus includes a solution distribution nozzle disposed within the wash section of the housing.
Abstract:
A system for management of solid chemistry supply can be configured to use operating attributes and sensed operating conditions associated with a process to estimate solid chemistry supply levels. The system can also be configured to control a feeder attached to a solid chemistry supply container. The control can include controlling a dose of a solid chemistry product to the container according to the estimation. The system can also be configured to communicate a message regarding an insufficient supply of the solid chemistry product.
Abstract:
Provided are methods of inhibiting microbial fouling and improving efficiency in biocide dosing in an industrial process containing an aqueous liquid having a biocide demand. In exemplary embodiments, the methods comprise treating an aqueous liquid having a biocide demand with a biocide, monitoring the biocide demand of the aqueous liquid, and filtering a stream of the aqueous liquid. The filtering may be performed in a full-flow or side stream manner.
Abstract:
A method of oxidizing a component of an aqueous medium is provided. The method includes adding an effective amount of an oxidizing composition to the aqueous medium. The oxidizing composition includes an ingredient, such as hydrogen peroxide, a percarbonate salt, a peroxy compound, a chlorite or alkali metal salt thereof, a chlorate or alkali metal salt thereof, or any combination thereof. The method also includes oxidizing the component. The component may be a metal, a mineral, a microbial metabolite, an organic molecule, or combination thereof. The method also includes modulating the application of the oxidizing composition based on a measured aqueous medium parameter.