Abstract:
A method and apparatus for transmitting a signal to a terminal are provided. The method includes: determining at least one of a plurality of resource blocks (RBs) of a frequency resource and a time resource in a subframe that transmits to the terminal; allocating a power rate to each of a first signal and a second signal to transmit to the terminal; and transmitting the first signal and the second signal through the RB according to the allocated power rate.
Abstract:
A method for automatically detecting a packet mode in a wireless communication system supporting a multiple transmission mode includes: acquiring at least one of data rate information, packet length information and channel bandwidth information from a transmitted frame; and determining the packet mode on the basis of the phase rotation check result of a symbol transmitted after a signal field signal and at least one of the data rate information, the packet length information and the channel bandwidth information acquired from the transmitted frame.
Abstract:
A method in which a base station transmits pilot signals in a multiple-antenna communication system is provided. The base station includes some of the plurality of pilot signals distinguished by at least one of time domain symbols, subcarriers, and orthogonal codes in a first set to which a first random number is applied. The base station includes the remaining pilot signals, excluding the pilot signals that are included in the first set, in a second set that uses the same resources as used by the first set and to which a second random number different from the first random number is applied. The base station transmits at least one of the pilot signals that belong to the first set and the second set.
Abstract:
In the present invention, data generated from a source unit are distributed to at least one bandwidth; the data distributed to the respective bandwidths are encoded in order to perform an error correction; the encoded data are distributed to at least one antenna; a subcarrier is allocated to the data distributed to the respective antennas, and an inverse Fourier transform is performed; a short preamble and a first long preamble corresponding to the subcarrier are generated; a signal symbol is generated according to a data transmit mode; and a frame is generated by adding a second long preamble between the signal symbol and a data field for the purpose of estimating a channel of a subcarrier which is not used.
Abstract:
In the present invention, data generated from a source unit are distributed to at least one bandwidth; the data distributed to the respective bandwidths are encoded in order to perform an error correction; the encoded data are distributed to at least one antenna; a subcarrier is allocated to the data distributed to the respective antennas, and an inverse Fourier transform is performed; a short preamble and a first long preamble corresponding to the subcarrier are generated; a signal symbol is generated according to a data transmit mode; and a frame is generated by adding a second long preamble between the signal symbol and a data field for the purpose of estimating a channel of a subcarrier which is not used.
Abstract:
In the present invention, data generated from a source unit are distributed to at least one bandwidth; the data distributed to the respective bandwidths are encoded in order to perform an error correction; the encoded data are distributed to at least one antenna; a subcarrier is allocated to the data distributed to the respective antennas, and an inverse Fourier transform is performed; a short preamble and a first long preamble corresponding to the subcarrier are generated; a signal symbol is generated according to a data transmit mode; and a frame is generated by adding a second long preamble between the signal symbol and a data field for the purpose of estimating a channel of a subcarrier which is not used.
Abstract:
A base station allocates at least one control channel element (CCE) to a first control channel earlier than allocating to the rest control channels other than the first control channel among a plurality of control channels corresponding to a first beam, when CCEs are allocated to the plurality of control channels corresponding to the first beam. Further, the base station allocates at least one CCE to the first control channel earlier than allocating to the rest control channels other than the first control channel among a plurality of control channels corresponding to a second beam, when CCEs are allocated to the plurality of control channels corresponding to the second beam.
Abstract:
In the present invention, data generated from a source unit are distributed to at least one bandwidth; the data distributed to the respective bandwidths are encoded in order to perform an error correction; the encoded data are distributed to at least one antenna; a subcarrier is allocated to the data distributed to the respective antennas, and an inverse Fourier transform is performed; a short preamble and a first long preamble corresponding to the subcarrier are generated; a signal symbol is generated according to a data transmit mode; and a frame is generated by adding a second long preamble between the signal symbol and a data field for the purpose of estimating a channel of a subcarrier which is not used.
Abstract:
In a communications system using a plurality of beams, a terminal determines a beam to be communicated with the terminal among the plurality of beams, determines one sequence among sequences allocated to the determined beam as a beam based random access preamble, and transmits the beam based random access preamble through the determined beam. In addition, if a random access response for the beam based random access preamble is not received from a base station for a set interval, the terminal determines one sequence among sequences in a cell based random access preamble collection as a cell based random access preamble and transmits the cell based random access preamble.
Abstract:
Provided is a method for feeding back a channel quality indicator (CQI) by a terminal. The terminal receives, from a base station, at least one reference signal through at least one of multiple beams of the base station. The terminal measures a signal-to-interference plus noise ratio (SINR) for the at least one reference signal. The terminal determines a first level corresponding to the measured SINR among levels of a first CQI. In addition, the terminal feeds back the first CQI having the first level to the base station.