Abstract:
A high electron mobility transistor includes a substrate including a first surface and a second surface facing each other and having a via hole passing through the first surface and the second surface, an active layer on the first surface, a cap layer on the active layer and including a gate recess region exposing a portion of the active layer, a source electrode and a drain electrode on one of the cap layer and the active layer, an insulating layer on the source electrode and the drain electrode and having on opening corresponding to the gate recess region to expose the gate recess region, a first field electrode on the insulating layer, a gate electrode electrically connected to the first field electrode on the insulating layer, and a second field electrode on the second surface and contacting the active layer through the via hole.
Abstract:
The present invention relates to a high reliability field effect power device and a manufacturing method thereof. A method of manufacturing a field effect power device includes sequentially forming a transfer layer, a buffer layer, a barrier layer and a passivation layer on a substrate, patterning the passivation layer by etching a first region of the passivation layer, and forming at least one electrode on the first region of the barrier layer exposed by patterning the passivation layer, wherein the first region is provided to form the at least one electrode, and the passivation layer may include a material having a wider bandgap than the barrier layer to prevent a trapping effect and a leakage current of the field effect power device.
Abstract:
Provided are a nitride-based high electron mobility transistor having enhanced frequency characteristics and an improved structural stability and manufacturing method thereof. The nitride-based high electron mobility transistor includes a first semiconductor layer and a second semiconductor layer sequentially formed on a substrate, source drain electrodes formed on the second semiconductor layer, a first insulating film formed on the second semiconductor layer and having an opening, a dielectric formed on the first insulating film to surround the opening of the first insulating film, a second insulating film formed on an inner sidewall of the dielectric, and a gate electrode formed on the dielectric to fill the opening of the first insulating film and inside the inner sidewall of the dielectric. A width of the inner sidewall at a bottom end of the dielectric is smaller than a width of the inner sidewall at a top end of the dielectric.
Abstract:
The present invention improves a heat dissipation property of a semiconductor device by transferring hexagonal boron nitride (hBN) with a two-dimensional nanostructure to the semiconductor device. A semiconductor device of the present invention includes a substrate having a first surface and a second surface, a semiconductor layer formed on the first surface of the substrate, an hBN layer formed on at least one surface of the first surface and the second surface of the substrate, and a heat sink positioned on the second surface of the substrate. A radiation rate of heat generated during driving of an element is increased to decrease a reduction in lifetime of a semiconductor device due to a temperature increase. The semiconductor device has a structure and configuration which are very effective in improving a rapid temperature increase due to heat generated by high-power semiconductor devices.
Abstract:
Provided herein is a patch antenna including a multilayered substrate on which a plurality of dielectric layers are laminated; at least one metal pattern layer disposed between the plurality of dielectric layers outside a central area of the multilayered substrate; an antenna patch disposed on an upper surface of the multilayered substrate and within the central area; a ground layer disposed on a lower surface of the multilayered substrate; a plurality of connection via patterns penetrating the plurality of dielectric layers to connect the metal pattern layer and the ground layer, and surrounding the central area; a transmission line comprising a first transmission line unit disposed on the upper surface of the multilayered substrate and located outside the central area, and a second transmission line unit disposed on the upper surface of the multilayered substrate and located within the central area; and an impedance transformer located below the second transmission line unit within the central area of the multilayered substrate.
Abstract:
Disclosed are a semiconductor device having a stable gate structure, and a manufacturing method thereof, in which a gate structure is stabilized by additionally including a plurality of gate feet under a gate head in a width direction of the gate head so as to serve as supporters in a gate structure including a fine gate foot having a length of 0.2 μm or smaller, and the gate head having a predetermined size. Accordingly, it is possible to prevent the gate electrode of the semiconductor device from collapsing, and improve reliability of the semiconductor device during or after the process of the semiconductor device.
Abstract:
Provided herein is a semiconductor device including a substrate; an active layer formed on top of the substrate; a protective layer formed on top of the active layer and having a first aperture; a source electrode, driving gate electrode and drain electrode formed on top of the protective layer; and a first additional gate electrode formed on top of the first aperture, wherein an electric field is applied to the active layer, protective layer and driving gate electrode due to a voltage applied to each of the source electrode, drain electrode and driving gate electrode, and the first additional gate electrode is configured to attenuate a size of the electric field applied to at least a portion of the active layer, protective layer and driving gate electrode.
Abstract:
Provided herein is a component package including a matching unit and a matching method thereof, the matching unit including: a substrate; a transmission line formed on the substrate, the transmission line being connected to a terminal of the component package; a bonding wire electrically connecting the transmission line and a central component; and a capacitor unit having a plurality of capacitors electrically connected with the transmission line by wiring connection, wherein an inductance of the matching unit is variable by adjusting a length of the bonding wire, and a capacitance of the matching unit is variable by increasing or reducing the number of capacitors electrically connected to the transmission line, of among the capacitors inside the capacitor unit, by extending or cutting off the wiring connection.
Abstract:
Disclosed are a field effect transistor for high voltage driving including a gate electrode structure in which a gate head extended in a direction of a drain is supported by a field plate embedded under a region of the gate head so as to achieve high voltage driving, and a manufacturing method thereof. Accordingly, the gate head extended in the direction of the drain is supported by the field plate electrically spaced by using an insulating layer, so that it is possible to stably manufacture a gate electrode including the extended gate head, and gate resistance is decreased by the gate head extended in the direction of the drain and an electric field peak value between the gate and the drain is decreased by the gate electrode including the gate head extended in the direction of the drain and the field plate proximate to the gate, thereby achieving an effect in that a breakdown voltage of a device is increased.
Abstract:
A high frequency device includes: a capping layer formed on an epitaxial structure; source and drain electrodes formed on the capping layer; a multilayer insulating pattern formed on entire surfaces of the source and drain electrodes and the capping layer in a step shape; a T-shaped gate passing through the multilayer insulating pattern and the capping layer to be in contact with the epitaxial structure; and a passivation layer formed along entire surfaces of the T-shaped gate and the multilayer insulating pattern.