Fluidized coking with increased production of liquids

    公开(公告)号:US10400177B2

    公开(公告)日:2019-09-03

    申请号:US15812396

    申请日:2017-11-14

    Abstract: Systems and methods are provided for integrating a fluidized coking process, optionally a coke gasification process, and processes for production of additional liquid products from the coking and/or gasification process. In some aspects, the integrated processes can allow for conversion of olefins generated during a fluidized coking process to form additional liquid products. Additionally or alternately, in some aspects the integrated processes can allow for separation of syngas from the flue gas/fuel gas generated by a gasifier integrated with a fluidized coking process. This syngas can then be used to form methanol, which can then be converted in a methanol conversion process to form heavier products. In such aspects, olefins generated during the fluidized coking process can be added to the methanol conversion process to improve the yield. Additionally, in various aspects, the off-gas from the integrated conversion process can be used as an additional paraffin feed that can be recycled to one of the heat integration conduits in the fluidized coker for additional generation of olefins. This can provide a further increase in liquid yields using a carbon source (C4− paraffins) that is conventionally viewed as a low value product from coking.

    FLUIDIZED COKING WITH CATALYTIC GASIFICATION

    公开(公告)号:US20190352571A1

    公开(公告)日:2019-11-21

    申请号:US15980979

    申请日:2018-05-16

    Abstract: Systems and methods are provided for integrating a fluidized coking process with a catalyst-enhanced coke gasification process. The catalyst for the gasification process can correspond to calcium oxide, a thermally decomposable calcium salt, a potassium salt such as potassium carbonate, or a combination thereof. Examples of suitable calcium salts can include, but are not limited to, calcium hydroxide, calcium nitrate, and calcium carbonate. The calcium oxide, potassium salts, and/or thermally decomposable calcium salts can be introduced into the integrated system, for example, as part of the feed into the coker. It has been unexpectedly discovered that using catalytic gasification as part of an integrated fluidized coking and gasification process can result in an overhead gas stream from the gasifier with increased energy content and/or overhead gas pressure.

    Resid upgrading with reduced coke formation

    公开(公告)号:US10752846B2

    公开(公告)日:2020-08-25

    申请号:US15933422

    申请日:2018-03-23

    Abstract: Systems and methods are provided for improving the processing of heavy or challenged feeds in a refinery based on integrated use of deasphalting, coking, and hydroprocessing. An optional fluid catalytic cracking unit can be included in the integrated system to allow for further improvements. The improved processing can be facilitated based on a process configuration where the vacuum resid fractions and/or other difficult fractions are deasphalted to generate a deasphalted oil and a deasphalter residue or rock fraction. The deasphalted oil can be passed into a hydroprocessing unit for further processing. The rock fraction can be used as the feed to a coking unit. Although deasphalter residue or rock is typically a feed with a high content of micro carbon residue, a high lift deasphalting process can allow a portion of the micro carbon residue in the initial feed to remain with the deasphalted oil. The portion of micro carbon residue that remains in the deasphalted oil can then be upgraded during hydroprocessing and/or during subsequent processing of the feed. By reducing the amount of micro carbon residue passed into a coker for a given initial feed source, the overall capacity for a reaction system to handle heavy feeds can be increased relative to the rate of coke production from the reaction system.

Patent Agency Ranking