Abstract:
A method to blend components to form a lubricant having a predetermined characteristic comprising determining the characteristic from a model that relates that characteristic as a function of the amount of its components and properties of the components.
Abstract:
A method for preventing or reducing engine knock or pre-ignition in a high compression spark ignition engine lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition that contains (i) a lubricating oil base stock comprising at least one branched ester having at least about 15% of the total carbons in the form of methyl groups, and (ii) at least one ashless antiwear additive selected from a phosphorus-containing ashless antiwear additive, a sulfur-containing ashless antiwear additive, and a phosphorus/sulfur-containing ashless antiwear additive. A lubricating engine oil having a composition that contains (i) a lubricating oil base stock comprising at least one branched ester having at least about 15% of the total carbons in the form of methyl groups, and (ii) at least one ashless antiwear additive selected from a phosphorus-containing ashless antiwear additive, a sulfur-containing ashless antiwear additive, and a phosphorus/sulfur-containing ashless antiwear additive. The lubricating oils of this disclosure are useful as passenger vehicle engine oil (PVEO) products.
Abstract:
A lubricant composition for high compression spark ignition engines that contains at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). A method for preventing or reducing engine knock and pre-ignition in an engine lubricated with a formulated oil. The formulated oil has a composition including at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). A fuel composition for high compression spark ignition engines that contains at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). A method for preventing or reducing engine knock and pre-ignition in an engine by using a fuel additive composition in a gasoline fuel composition. The fuel additive composition contains at least one bismuth-containing compound (e.g., a bismuth salt of a carboxylic acid). The lubricating oils of this disclosure are useful as passenger vehicle engine oil (PVEO) products.
Abstract:
A method and system to blend components to form a lubricant having a predetermined characteristic. The method includes determining the characteristic from a model that relates that characteristic as a function of the amount of its components and properties of the components. These predetermined characteristics include KV (kinematic viscosities), CCS (cold cranking simulator), HTHS (high temperature, high shear viscosity), Noack Volatility, MRV (mini-rotary viscometer), Brookfield Viscosity, Soot-Dispersancy, Oxidation, Deposit, Wear, Sulfur, Phosphorus, Base Number, Color, Ash Content, Aniline Point, Acid Number, Viscosity Index, Turbidity, Demulsibility, Foam Stability, Acute Toxicity, Biodegradability, Nitrogen, and Detergency.