Abstract:
A method for improving wear control in an engine or other mechanical component lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition comprising a lubricating oil base stock as a major component, and encapsulated microscale particles, as a minor component. The minor component contains no sulfur or phosphorus. The encapsulated microscale particles include an encapsulating material and a core material encapsulated by the encapsulating material. The core material includes at least one metal salt selected from a metal oxide, metal hydroxide, metal carbonate, or mixtures thereof. The encapsulating material is derived from a carboxylic acid selected from an aliphatic carboxylic acid, a cycloaliphatic carboxylic acid, an aromatic carboxylic acid, and mixtures thereof. The lubricating oils are useful in internal combustion engines.
Abstract:
A method for improving wear control, while maintaining or improving fuel efficiency, in an engine or other mechanical component lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition including a lubricating oil base stock as a major component, and a mixture of (i) at least one carboxylic acid or metal salt of a carboxylic acid(e.g., metal stearate or stearic acid), and (ii) at least one surfactant (e.g., nonionic surfactant), as a minor components. A method for improving solubility, compatibility and dispersancy of polar additives in a lubricating oil is also provided. A lubricating oil having a composition including a lubricating oil base stock as a major component, and a mixture of (i) at least one carboxylic acid or metal salt of a carboxylic acid, and (ii) at least one surfactant, as minor components. The lubricating oils are useful in internal combustion engines.
Abstract:
A method for improving wear control in an engine or other mechanical component lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition including a lubricating oil base stock as a major component, and encapsulated boron-containing microscale particles, as a minor component. The minor component preferably contains no metal or sulfur, and preferably no phosphorus. The encapsulated boron-containing microscale particles include an encapsulating material and a boron-containing compound encapsulated by the encapsulating material. The boron-containing compound is derived from a boron powder, a boron alkoxide, a boron oxide, a boric acid, a borane, or mixtures thereof. The encapsulating material is derived from a carboxylic acid selected from an aliphatic carboxylic acid, a cycloaliphatic carboxylic acid, an aromatic carboxylic acid, and mixtures thereof. The lubricating oils are useful in internal combustion engines.
Abstract:
A method for improving wear control in an engine or other mechanical component lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition including a lubricating oil base stock as a major component, and encapsulated microscale particles, as a minor component. The minor component contains no sulfur or phosphorus. The encapsulated microscale particles include an encapsulating material and a core material encapsulated by the encapsulating material. The core material includes at least one metal salt selected from a metal oxide, metal hydroxide, metal carbonate, or mixtures thereof. The encapsulating material is derived from a carboxylic acid selected from an aliphatic carboxylic acid, a cycloaliphatic carboxylic acid, an aromatic carboxylic acid, and mixtures thereof. The lubricating oils are useful in internal combustion engines.
Abstract:
A method for improving wear control in an engine or other mechanical component lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition including a lubricating oil base stock as a major component, and encapsulated microscale particles, as a minor component. The minor component contains no sulfur or phosphorus. The encapsulated microscale particles include an encapsulating material and a core material encapsulated by the encapsulating material. The core material includes at least one metal salt selected from a metal oxide, metal hydroxide, metal carbonate, or mixtures thereof. The encapsulating material is derived from a carboxylic acid selected from an aliphatic carboxylic acid, a cycloaliphatic carboxylic acid, an aromatic carboxylic acid, and mixtures thereof. The lubricating oils are useful in internal combustion engines.
Abstract:
A method for improving wear control, while maintaining or improving fuel efficiency, in an engine or other mechanical component lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition including a lubricating oil base stock as a major component, and a mixture of (i) at least one carboxylic acid or metal salt of a carboxylic acid(e.g., metal stearate or stearic acid), and (ii) at least one surfactant (e.g., nonionic surfactant), as a minor components. A method for improving solubility, compatibility and dispersancy of polar additives in a lubricating oil is also provided. A lubricating oil having a composition including a lubricating oil base stock as a major component, and a mixture of (i) at least one carboxylic acid or metal salt of a carboxylic acid, and (ii) at least one surfactant, as minor components. The lubricating oils are useful in internal combustion engines.