Abstract:
Hydrogenation catalysts for aromatic hydrogenation including an organosilica material support, which is a polymer comprising independent units of a monomer of Formula [Z1OZ2OSiCH2]3 (I), wherein each Z1 and Z2 independently represent a hydrogen atom, a C1-C4 alkyl group or a bond to a silicon atom of another monomer; and at least one catalyst metal are provided herein. Methods of making the hydrogenation catalysts and processes of using, e.g., aromatic hydrogenation, the hydrogenation catalyst are also provided herein.
Abstract:
Organosilica materials, which are a polymer of at least one independent monomer of Formula [Z1OZ2OSiCH2]3 (I), wherein each Z1 and Z2 independently represent a hydrogen atom, a C1-C4 alkyl group or a bond to a silicon atom of another monomer and at least one other trivalent metal oxide monomer are provided herein. Methods of preparing and processes of using the organosilica materials, e.g., for catalysis etc., are also provided herein.
Abstract:
A method is provided for replacing at least a portion of the organic linker content of a zeolitic imidazolate framework composition. The method comprises exchanging the organic linker with another organic linker. Also provided is a new material, designated as EMM-19, and a method of using EMM-19 to adsorb gases, such as carbon dioxide.
Abstract:
Primary, secondary (1°,2°) alkylethylenediamine- and alkylpropylenediamine-appended variants of metal-organic framework are provided for CO2 capture applications. Increasing the size of the alkyl group on the secondary amine enhances the stability to diamine volatilization from the metal sites. Two-step adsorption/desorption profiles are overcome by minimzing steric interactions between adjacent ammonium carbamate chains. For instance, the isoreticularly expanded framework Mg2(dotpdc) (dotpdc4−=4,4″-dioxido-[1,1′:4′,1″-terphenyl]-3,3″-dicarboxylate), yields diamine-appended adsorbents displaying a single CO2 adsorption step. Further, use of the isomeric framework Mg-IRMOF-74-II or Mg2(pc-dobpdc) (pc-dobpdc4−=3,3-dioxidobiphenyl-4,4-dicarboxylate, pc=para-carboxylate) also leads to a single CO2 adsorption step with bulky diamines. By relieving steric interactions between adjacent ammonium carbamate chains, these frameworks enable step-shaped CO2 adsorption, decreased water co-adsorption, and increased stability to diamine loss. Variants of Mg2(dotpdc) and Mg2(pc-dobpdc) functionalized with large diamines such as N-(n-heptyl)ethylenediamine have utility as adsorbents for carbon capture applications.
Abstract:
Primary, secondary (1º,2º) alkylethylenediamine- and alkylpropylenediamine-appended variants of metal-organic framework are provided for CO2 capture applications. Increasing the size of the alkyl group on the secondary amine enhances the stability to diamine volatilization from the metal sites. Two-step adsorption/desorption profiles are overcome by minimizing steric interactions between adjacent ammonium carbamate chains. For instance, the isoreticularly expanded framework Mg2(dotpdc) (dotpdc4−=4,4″-dioxido-[1,1′:4′,1″-terphenyl]-3,3″-dicarboxylate), yields diamine-appended adsorbents displaying a single CO2 adsorption step. Further, use of the isomeric framework Mg-IRMOF-74-II or Mg2(pc-dobpdc) (pc-dobpdc4−=3,3-dioxidobiphenyl-4,4-dicarboxylate, pc=para-carboxylate) also leads to a single CO2 adsorption step with bulky diamines. By relieving steric interactions between adjacent ammonium carbamate chains, these frameworks enable step-shaped CO2 adsorption, decreased water co-adsorption, and increased stability to diamine loss. Variants of Mg2(dotpdc) and Mg2(pc-dobpdc) functionalized with large diamines such as N-(n-heptyl)ethylenediamine have utility as adsorbents for carbon capture applications.
Abstract:
Hydrogenation catalysts for aromatic hydrogenation including an organosilica material support, which is a polymer comprising independent units of a monomer of Formula [Z1OZ2OSiCH2]3 (I), wherein each Z1 and Z2 independently represent a hydrogen atom, a C1-C4 alkyl group or a bond to a silicon atom of another monomer; and at least one catalyst metal are provided herein. Methods of making the hydrogenation catalysts and processes of using, e.g., aromatic hydrogenation, the hydrogenation catalyst are also provided herein.
Abstract:
Methods of preparing organosilica materials, which are a polymer comprising of at least one independent cyclic polyurea monomer of Formula wherein each R1 is a Z1OZ2Z3SiZ4 group, wherein each Z1 represents a hydrogen atom, a C1-C4 alkyl group, or a bond to a silicon atom of another monomer unit; each Z2 and Z3 independently represent a hydroxyl group, a C1-C4 alkyl group, a C1-C4 alkoxy group or an oxygen atom bonded to a silicon atom of another monomer unit; and each Z4 represents a C1-C8 alkylene group bonded to a nitrogen atom of the cyclic polyurea are provided herein. Methods of preparing and processes of using the organosilica materials, e.g., for gas separation, color removal, etc., are also provided herein.
Abstract:
Primary, secondary (1º,2º) alkylethylenediamine- and alkylpropylenediamine-appended variants of metal-organic framework are provided for CO2 capture applications. Increasing the size of the alkyl group on the secondary amine enhances the stability to diamine volatilization from the metal sites. Two-step adsorption/desorption profiles are overcome by minimizing steric interactions between adjacent ammonium carbamate chains. For instance, the isoreticularly expanded framework Mg2(dotpdc) (dotpdc4−=4,4″-dioxido-[1,1′:4′,1″-terphenyl]-3,3″-dicarboxylate), yields diamine-appended adsorbents displaying a single CO2 adsorption step. Further, use of the isomeric framework Mg-IRMOF-74-II or Mg2(pc-dobpdc) (pc-dobpdc4−=3,3-dioxidobiphenyl-4,4-dicarboxylate, pc=para-carboxylate) also leads to a single CO2 adsorption step with bulky diamines. By relieving steric interactions between adjacent ammonium carbamate chains, these frameworks enable step-shaped CO2 adsorption, decreased water co-adsorption, and increased stability to diamine loss. Variants of Mg2(dotpdc) and Mg2(pc-dobpdc) functionalized with large diamines such as N-(n-heptyl)ethylenediamine have utility as adsorbents for carbon capture applications.
Abstract:
Achieving the selective and reversible adsorption of CO2 from humid, low partial pressures streams such as the flue gas resulting from the combustion of natural gas in combined cycle power plants (4% CO2) is challenging due to the need for high thermal, oxidative, and hydrolytic stability as well as moderate regeneration conditions to reduce the energy of adsorption/desorption cycling. Appending cyclic primary, secondary diamines, exemplified by 2-(aminomethyl)piperidine (2-ampd), to the metal-organic frameworks Mg2(dobpdc) (dobpdc4−=4,4-dioxidobiphenyl-3,3-dicarboxylate), Mg2(dotpdc) (dotpdc4−=4,4″-dioxido-[1,1′:4′,1″-terphenyl]-3,3″-dicarboxylate) or Mg2(pc-dobpdc) (pc-dobpdc4−=dioxidobiphenyl-4,4′-dicarboxylate) produces adsorbents of the classes EMM-44, EMM-45, and EMM-46, respectively, that display step-shaped adsorption of CO2 at the partial pressures required for 90% capture from natural gas flue gas at temperatures up to or exceeding 60° C. Using a cyclic diamine in place of a diamine functionalized with bulky alkyl groups enables fast adsorption/desorption kinetics with sharp CO2 adsorption and desorption steps.
Abstract:
A method is provided for replacing at least a portion of the organic linker content of a zeolitic imidazolate framework composition. The method comprises exchanging the organic linker with another organic linker. Also provided is a new material, designated as EMM-19, and a method of using EMM-19 to adsorb gases, such as carbon dioxide.