Abstract:
The invention relates to a method for scanning a region of interest, such as a portion of a neural process, via a laser scanning microscope having focusing means for focusing a laser beam and having electro-mechano-optic deflecting means for deflecting the laser beam, the method comprising: providing a primary scanning trajectory (92a) for the at least one region of interest; providing a plurality of spaced apart (89) auxiliary scanning trajectories (92b) running along the primary scanning trajectory within the region of interest; providing a scanning sequence for scanning the scanning trajectories (192); providing cross-over (94) trajectories between the scanning trajectories of two consecutive scanning trajectories in the scanning sequence. The invention further relates to a measuring system for implementing the method according to the invention.
Abstract:
The subject of the invention relates to a combined imaging system (10') that includes a laser scanning microscope (50, 50'), and a measuring device with a lower resolution than the resolution of the laser scanning microscope (50, 50') and that measures over a larger spatial scale than the spatial scale of the laser scanning microscope (50, 50'). The subject of the invention also relates to an MRI compatible laser scanning microscope which comprises: deflecting means (24') for deflecting a laser beam (13), objective (28'), adjustable objective arm (38), distance adapter (39) and at least one detector (30'). The essence of the MRI compatible laser scanning microscope is that at least the objective (28'), the adjustable objective arm (38), the distance adapter (39) and the at least one detector (30') are made from non-magnetisable materials and the deflecting means (24') is magnetically shielded.
Abstract:
The invention relates to a laser scanning microscope (10) having: focusing means (15) having a focal plane (29) and comprising at least one optical element for focusing a laser beam (13); drive means (18) for displacing the at least one optical element of the focusing means (15) for changing the position of the focal plane (29), and deflecting means (14) for deflecting the laser beam (13). The microscope comprises a control system (32) configured to carry out the steps of: providing a periodical drive signal for the drive means (18); obtaining time dependant displacement data of the at least one optical element of the focusing means (15) in response to the periodical drive signal of the drive means (18); providing a response function (z(t)) using the time dependant displacement data, calculating a drive signal for the deflecting means (14) using the response function (z(t)) to move the focal volume (30) of the laser beam (13) along a given 3D trajectory (48) within a sample to be examined. The invention further relates to a method for carrying out such a scanning operation along a 3D trajectory (48). ?
Abstract:
The invention relates to an acousto-optic deflector comprising a bulk of acousto-optic medium and acoustic wave generator coupled to the bulk, characterised by that the acoustic wave generator comprises at least two different electro-acoustic transducers for generating acoustic waves in the bulk.
Abstract:
The invention relates to a compensator system adapted to compensate for the angular dispersion of electromagnetic beams deflected by at least one acousto-optic deflector. The compensator system comprises: - a first lens group for spatially separating the deflected beams of different deflection angle and angular dispersion, - a compensator element having a first surface and a second surface that together work as prisms with tilt angles .beta. and prism opening angles ap that vary with the distance from the optical axis so as to compensate for the angular dispersion of the spatially separated deflected beams, - a second lens group arranged so as to substantially parallelise the different wavelength components of each deflected beam while maintaining the angular variation of the beams deflected at different acoustic frequencies. The invention further relates to a corresponding method for compensating for the angular dispersion of electromagnetic beams deflected by an acousto-optic deflector.
Abstract:
The invention relates to an acousto-optic deflector comprising a bulk of acousto-optic medium and acoustic wave generator coupled to the bulk, characterised by that the acoustic wave generator comprises at least two different electro-acoustic transducers for generating acoustic waves in the bulk.