Abstract:
A device implements a method for estimating the application force of a touching object onto a touch surface in an FTIR-based projection-type touch-sensing apparatus. The apparatus generates projection signals representing radiation that has propagated on a plurality of propagation paths by total internal reflection (TIR) inside a transmissive panel beneath a touch surface of the transmissive panel such that a touching object on the touch surface causes attenuation (frustration) of at least one of the projection signals. The device generates (40) a time series of force values, which represent the application force, based on a time series of magnitude values, which represent a magnitude of a peak in two-dimensional interaction patterns generated by image reconstruction processing of the projection signals, the peak corresponding to the touching object on the touch surface. The force estimation may involve one or more corrections (41) with respect to the duration of the touching object in a low-speed state, the speed of touching object, and the size of the peak, as well as low-pass filtering (42) of the force values.
Abstract:
Multi-touch sensitivity is enabled using a touch system that comprises a panel configured to conduct signals, e.g. by FTIR, from a plurality of incoupling points to a plurality of outcoupling points, thereby defining detection lines across the panel between pairs of incoupling and outcoupling points. A signal processor operates in a repeating sequence of iterations to obtain (50) a current signal value for each detection line, and generate (53, 53') a first interaction pattern and a second interaction pattern as a function of the current signal values, such that the first and second interaction patterns are reconstructed two-dimensional distributions of local interaction with the conducted signals across the surface portion, and represent changes in interaction on different time scales. Thereby, the movement of an object will affect how it is represented in each of the first and second interaction patterns. Touch detection may be improved by proper selection of the time scales and combined analysis (56) of the first and second interaction patterns.
Abstract:
Multi-touch sensitivity is enabled using a touch system that comprises a panel configured to conduct signals, e.g. by FTIR, from a plurality of incoupling points to a plurality of outcoupling points, thereby defining detection lines across the panel between pairs of incoupling and outcoupling points. A signal processor operates in a repeating sequence of iterations to obtain (50) a current signal value for each detection line, and generate (53, 53′) a first interaction pattern and a second interaction pattern as a function of the current signal values, such that the first and second interaction patterns are reconstructed two-dimensional distributions of local interaction with the conducted signals across the surface portion, and represent changes in interaction on different time scales. Thereby, the movement of an object will affect how it is represented in each of the first and second interaction patterns.