Abstract:
The present disclosure relates to combination of images. A method according to an embodiment comprises: receiving a visual image and an infrared (IR) image of a scene; extracting high spatial frequency content from said visual image; and combining said extracted high spatial frequency content from said visual image with said IR image, wherein a resolution for the visual image and the IR image are substantially the same, to generate a combined image.
Abstract:
The present disclosure relates to combination of images. A method according to an embodiment comprises: receiving a visual image and an infrared (IR) image of a scene; extracting high spatial frequency content from said visual image; and combining said extracted high spatial frequency content from said visual image with said IR image, wherein a resolution for the visual image and the IR image are substantially the same, to generate a combined image.
Abstract:
A camera comprising a first imaging part for capturing IR image data of a first field of view, said first imaging part comprising IR optics, a second imaging part for capturing visible light data of a second field of view at least partially overlapping the first field of view, said second imaging part comprising visible light optics, a laser pointer for providing a laser dot in the second field of view, and means for adjusting the first and second field of view relative to each other in dependence of the focusing distance of the first or second imaging part. The camera is arranged to determine the distance z between the camera and an object being imaged by means of the distance d, using the stored relationship. The distance z may be used to align the IR image and the visible light image.
Abstract:
A method of displaying together IR image data and visible light image data corresponding to the same field of view in the same image is disclosed, comprising displaying IR image data in at least a first portion of the image and visible light image data in at least a second portion of the image. The method is characterized by the step of displaying the IR image data according to a colouring scheme adapted to the temperature range relevant to the first portion of the image. The resolution in the relevant temperature range may be increased by applying the entire range of colours available in the colouring scheme to the selected temperature range.