Abstract:
A method of pyrolyzing sewage sludge to transform the same into activated carbon, with the combustible pyrogas and volatile liquids included therewith that arise from the pyrolysis operation being burned to sustain the transformation operation. A first portion of the hot activated carbon resulting from the operation is mixed with the wet sewage sludge to provide a dry sludge mixture that is subsequently subjected to the pyrolyzing operation. Water vapor that discharges as the hot activated carbon is mixed with the wet sewage sludge is heated by the burning of the pyrogas and transformed to steam. The resulting steam is in contact with the dry mixture during the pyrolyzing operation, and as a result the dry mixture is transformed to activated carbon. A second portion of the resulting activated carbon is separated from the first portion thereof, with this second portion being available for use apart from the method.
Abstract:
A method for gasifying carbonaceous materials to fuel gases comprises the formation of an ultra-superheated steam (USS) composition substantially containing water vapor, carbon dioxide and highly reactive free radicals thereof, at a temperature of about 2400° F. (1316° C.) to about 5000° F. (2760° C.). The USS composition comprising a high temperature clear, colorless flame is contacted with a carbonaceous material for rapid gasification/reforming thereof. The need for significant superstoichiometric steam addition for temperature control. Methods for controlling a gasification/reforming system to enhance efficiency are described. A USS burner for a fluidized bed gasification/reforming reactor, and methods of construction, are described.