Abstract:
A micro-oscillation element includes a base frame, an oscillating portion, and a link portion connecting the base frame and the oscillating portion to each other. The oscillating portion has a movable functional portion, a first driving electrode connected to the movable functional portion, and a weight portion joined to the first driving electrode. The link portion defines an axis of the oscillating motion of the oscillating portion. The second driving electrode, fixed to the base frame, generates driving force for the oscillating motion in cooperation with the first driving electrode.
Abstract:
The following disclosure provides a power strip (1) including: a busbar (12) electrically connected to a power source; multiple electrical outlets allowing multiple power plugs (7) to be inserted thereinto, respectively; distribution bars (17) which are branched out from the busbar (12) and respectively supply the electrical outlets with electric currents of the power source; and a plurality of electric current measurement units (30) each configured to measure the electric current flowing through a corresponding one of the distribution bars (12).
Abstract:
The following disclosure provides a power strip (1) including: a busbar (12) electrically connected to a power source; multiple electrical outlets allowing multiple power plugs (7) to be inserted thereinto, respectively; distribution bars (17) which are branched out from the busbar (12) and respectively supply the electrical outlets with electric currents of the power source; and a plurality of electric current measurement units (30) each configured to measure the electric current flowing through a corresponding one of the distribution bars (12).
Abstract:
A micro oscillating device includes a frame, an oscillating part including a first drive electrode for application of a reference electric potential, and a connecting part for connecting the frame and the oscillating part to each other, where the connecting part defines an axis of an oscillating motion of the oscillating part. A second drive electrode is fixed to the frame to cooperate with the first drive electrode for generation of a driving force for the oscillating movement. The first drive electrode includes a first end extension and a second end extension separated from each other and extending in a direction crossing the axis. The second drive electrode is within a separation distance between the first and the second end extensions.
Abstract:
A micro-oscillation element includes a base frame, an oscillating portion, and a link portion connecting the base frame and the oscillating portion to each other. The oscillating portion has a movable functional portion, a first driving electrode connected to the movable functional portion, and a weight portion joined to the first driving electrode. The link portion defines an axis of the oscillating motion of the oscillating portion. The second driving electrode, fixed to the base frame, generates driving force for the oscillating motion in cooperation with the first driving electrode.
Abstract:
The following disclosure provides a power strip (1) including: a busbar (12) electrically connected to a power source; multiple electrical outlets allowing multiple power plugs (7) to be inserted thereinto, respectively; distribution bars (17) which are branched out from the busbar (12) and respectively supply the electrical outlets with electric currents of the power source; and a plurality of electric current measurement units (30) each configured to measure the electric current flowing through a corresponding one of the distribution bars (12).
Abstract:
A semiconductor device includes a semiconductor chip having an electric circuit; and a cooling device including at least one channel serving as a flow path through which coolant flows, an external surface including projections, and a metallic layer formed over the external surface including the projections. In the semiconductor device, the projections of the external surface of the cooling device are brought into contact with a first surface of the semiconductor chip via the metallic layer such that the semiconductor chip is cooled by allowing the coolant to flow through the channel formed in the cooling device.
Abstract:
A micro oscillating device includes a frame, an oscillating part including a first drive electrode for application of a reference electric potential, and a connecting part for connecting the frame and the oscillating part to each other, where the connecting part defines an axis of an oscillating motion of the oscillating part. A second drive electrode is fixed to the frame to cooperate with the first drive electrode for generation of a driving force for the oscillating movement. The first drive electrode includes a first end extension and a second end extension separated from each other and extending in a direction crossing the axis. The second drive electrode is within a separation distance between the first and the second end extensions.
Abstract:
A micro-oscillation element includes a base frame, an oscillating portion, and a link portion connecting the base frame and the oscillating portion to each other. The oscillating portion has a movable functional portion, a first driving electrode connected to the movable functional portion, and a weight portion joined to the first driving electrode. The link portion defines an axis of the oscillating motion of the oscillating portion. The second driving electrode, fixed to the base frame, generates driving force for the oscillating motion in cooperation with the first driving electrode.
Abstract:
A micro oscillating device includes a frame, an oscillating part including a first drive electrode for application of a reference electric potential, and a connecting part for connecting the frame and the oscillating part to each other, where the connecting part defines an axis of an oscillating motion of the oscillating part. A second drive electrode is fixed to the frame to cooperate with the first drive electrode for generation of a driving force for the oscillating movement. The first drive electrode includes a first end extension and a second end extension separated from each other and extending in a direction crossing the axis. The second drive electrode is within a separation distance between the first and the second end extensions.