Abstract:
A system for natural gas liquefaction includes a natural gas source for providing a flow of natural gas and a moisture removal system located downstream of the natural gas source. The system includes a first heat exchanger located downstream of the moisture removal system for exchanging heat between the natural gas flow path and a first refrigerant flow path of a refrigerant cycle subsystem. The system includes one first throttle valve located downstream of heat exchanger for expanding the flow of natural gas and causing reduction in pressure and temperature of the flow of natural gas. The system includes a filter subassembly for separating solid particles present in the flow of natural gas. The system includes a second heat exchanger located downstream of the filter subassembly and is configured to transfer heat from a natural gas vapor flow path to a second refrigerant flow path of the refrigeration cycle subsystem.
Abstract:
A supersonic compressor (10) includes a fluid inlet (26), a fluid outlet (28), and a fluid conduit extending there between with a supersonic compressor rotor (40) disposed therein. The supersonic compressor rotor includes a first end wall (60) and a plurality of vanes (46) coupled thereto. Each pair of the vanes defines a fluid flow channel (80). The fluid flow channel defines a flow channel inlet opening (76) and a flow channel outlet opening (78) and includes a throat portion (124). The supersonic compressor rotor also includes a second end wall (90) and at least one axially translatable fluid control device (172) positioned adjacent to the rotor. The axially translatable fluid control device is configured to obstruct the throat portion and includes at least one axially translatable protrusion (178) insertable into at least a portion of the throat portion.
Abstract:
A turbine blisk is provided. The turbine blisk includes an inner rim, a plurality of adjacent rotor blades extending radially outward from said inner rim, a shroud segment integrally coupled to each of the plurality of adjacent rotor blades, thereby forming a plurality of adjacent shroud segments, and a gap defined between each of the adjacent shroud segments. The gap has a geometry that facilitates interlocking the plurality of adjacent shroud segments when a torsional force is applied to the plurality of adjacent rotor blades.
Abstract:
A system and method for producing liquid natural gas (LNG) from a natural gas stream is presented. The system includes a moisture removal device and compressor for removing moisture from and compressing the natural gas stream. The low moisture compressed natural gas stream is cooled in a heat exchanger to discharge a cooled compressed discharge stream. A multi-phase turbo expander provides for further cooling and expansion of the cooled compressed discharge stream, generating an expanded exhaust stream comprising a mixture of a vapor comprised substantially of CH4 and a LNG/ice/solid CO2 slurry. The expanded exhaust stream is separated to generate a vapor stream comprised substantially of CH4 and a liquid natural gas/ice/solid CO2 slurry stream. Further separation of the liquid natural gas/ice/solid CO2 slurry stream generates a liquid natural gas output stream and an output stream comprised substantially of ice/solid CO2.
Abstract:
PROBLEM TO BE SOLVED: To provide an improved water removing pocket to provide improved water removing efficiency. SOLUTION: In the constitution of the improved water removing pocket including the axially expanded section of the water removing slot covering a bucket cover, the pocket can provide a desired slot expansion section by omitting a trough segment upperstream of the pocket. The constitution of the improved water removing pocket relating to the present invention improves water removing efficiency by making the water move along the outside side wall of a nozzle in a membrane state and accompanied by the leaked jet stream above the bucket cover and enter the pocket.
Abstract:
PROBLEM TO BE SOLVED: To provide a method and device for measuring the trailing edge thickness of an airfoil part. SOLUTION: This device 10 for measuring the thickness of the trailing edge 30 of the airfoil part of a turbine comprises a plurality of jigs. Each jig comprises a body part 16, a front end part 14, and an opening having a slot 26 of a prescribed width arranged along a side edge 20 adjacently to the leading edge 22 of the front end part 14 and engaged with the trailing edge 30 of the airfoil part. The jigs have prescribed different slot widths, respectively.
Abstract:
A system and method for producing liquid natural gas (LNG) from a natural gas stream is presented. The system includes a moisture removal device (12) and compressor (22) for removing moisture from and compressing the natural gas stream. The low moisture compressed natural gas stream (21) is cooled in a heat exchanger (24) to discharge a cooled compressed discharge stream. A multi-phase turbo expander provides for further cooling and expansion of the cooled compressed discharge stream, generating an expanded exhaust stream comprising a mixture of a vapor comprised substantially of CH4 and a LNG/ice/solid CO2 slurry. The expanded exhaust stream is separated to generate a vapor stream comprised substantially of CH4 and a liquid natural gas/ice/solid CO2 slurry stream. Further separation of the liquid natural gas/ice/solid CO2 slurry stream generates a liquid natural gas output stream and an output stream comprised substantially of ice/solid CO2. The most suitable drawing: FIG. 1.
Abstract:
Un rotor de compresor supersónico que comprende: un disco (48) de rotor que comprende un cuerpo que se extiende entre una superficie (56) radialmente interna y una superficie (58) radialmente externa; una pluralidad de álabes (46) acoplados a dicho cuerpo, extendiéndose dichos álabes hacia el exterior de dicho disco (48) de rotor, adyacentes a dichos álabes que forman un par (74) y orientados de manera que un canal de flujo se define entre cada par de alabes adyacentes, extendiéndose dicho canal de flujo entre una abertura (76) de entrada y una abertura (78) de salida, en el que el canal (80) de flujo está dispuesto para canalizar fluido a lo largo de un trayecto (82) de flujo desde la abertura (76) de entrada hasta la abertura (78) de salida en una dirección radial (64); y al menos una rampa (98) de compresión supersónica situada dentro de dicho canal (80) de flujo, estando dicha rampa de compresión supersónica configurada para impedir que se forme una onda de choque normal dentro de dicho canal (80) de flujo y para condicionar un fluido que está siendo canalizado a través de dicho canal de flujo de manera que el fluido está caracterizado por una primera velocidad en dicha abertura de entrada y una segunda velocidad en dicha abertura de salida, siendo cada una de dichas primera velocidad y segunda velocidad supersónicas con respecto a dichas superficies de disco de rotor; en el que dicha rampa (98) de compresión supersónica comprende una superficie (126) de compresión que se extiende entre un borde (130) delantero y un extremo de borde (152) trasero, estando dicho borde delantero situado más próximo a dicha abertura (76) de entrada que dicho borde trasero, definiendo dicho borde trasero una zona (124) de estrangulamiento de dicho canal (80) de flujo, presentando dicha zona de estrangulamiento un área en sección transversal mínima de dicho canal de flujo y en el que dicho borde (152) trasero está situado en posición adyacente a dicha abertura (78) de salida.
Abstract:
Un rotor de compresor supersónico. El rotor del compresor supersónico incluye un cuerpo (56) de disco esencialmente cilíndrico que incluye una superficie (68) corriente arriba, una superficie (70) corriente abajo y una superficie (66) radialmente externa que se extiende generalmente en forma axial entre la superficie (68) corriente arriba y la superficie corriente abajo. El cuerpo de disco define un eje (62) de línea central. Una pluralidad de aletas (54) está acoplada con la superficie radialmente externa. Las aletas adyacentes forman un par y están orientadas de tal forma que se define un canal (88) de flujo entre cada par de aletas adyacentes. El canal de flujo se extiende generalmente en forma axial entre la abertura (90) de entrada y la abertura (92) de salida. Por lo menos una rampa (112) de compresión supersónica está colocada dentro del canal de flujo. La rampa de compresión supersónica se puede colocar, en forma selectiva, en una primera posición (156), en una segunda posición (158) y en cualquier posición entre ellas.
Abstract:
A supersonic compressor rotor that includes a rotor disk that includes a substantially cylindrical endwall, a radially inner surface, and a radially outer surface. The endwall extends between the radially inner surface and the radially outer surface. A plurality of vanes are coupled to the endwall. The vanes extend outwardly from the endwall. Adjacent vanes form a pair and are spaced a circumferential distance apart such that a flow channel is defined between each pair of circumferentially-adjacent vanes. The flow channel extends generally radially between an inlet opening and an outlet opening. A first supersonic compression ramp is coupled to the endwall. The first supersonic compression ramp is positioned within the flow channel to facilitate forming at least one compression wave within the flow channel.