Abstract:
A statistical multiplexer for coding and multiplexing multiple channels of digital television data, or multiple panels of HDTV digital television data. A bit rate need parameter is determined (102, 104, 106) for each encoder (112, 114, 116) in a stat mux group, and an encoding bit rate is allocated to each channel based on its need parameter. A transmission bit rate is allocated to each channel as a time-lagged version of its need parameter to minimize a rate mismatch between the output and the input of a decoder buffer (184). A packet processor (250, 350) checks for impending decoder buffer overflow or underflow events to set minimum and maximum limits on the transmission bit rate. Moreover, these limits are set based on whether a new transmission bit rate can be implemented before the decoding time stamp (DTS) of the current or next frame.
Abstract:
A statistical multiplexer for coding and multiplexing multiple channels of digital television data, or multiple panels of HDTV digital television data. A bit rate need parameter is determined for each encoder in a stat mux group, and an encoding bit rate is allocated to each channel based on its need parameter. A transmission bit rate is allocated to each channel as a time-lagged version of its need parameter to minimize a rate mismatch between the output and the input of a decoder buffer. A packet processor checks for impending decoder buffer overflow or underflow events to set minimum and maximum limits on the transmission bit rate. Moreover, these limits are set based on whether a new transmission bit rate can be implemented before the decoding time stamp (DTS) of the current or next frame.
Abstract:
A statistical multiplexer for coding and multiplexing multiple channels of digital television data, or multiple panels of HDTV digital television data. A bit rate need parameter is determined (102, 104, 106) for each encoder (112, 114, 116) in a stat mux group, and an encoding bit rate is allocated to each channel based on its need parameter. A transmission bit rate is allocated to each channel as a time-lagged version of its need parameter to minimize a rate mismatch between the output and the input of a decoder buffer (184). A packet processor (250, 350) checks for impending decoder buffer overflow or underflow events to set minimum and maximum limits on the transmission bit rate. Moreover, these limits are set based on whether a new transmission bit rate can be implemented before the decoding time stamp (DTS) of the current or next frame.
Abstract:
A statistical multiplexer for coding and multiplexing multiple channels of digital television data, or multiple panels of HDTV digital television data. A bit rate need parameter is determined for each encoder in a stat mux group, and an encoding bit rate is allocated to each channel based on its need parameter. A transmission bit rate is allocated to each channel as a time-lagged version of its need parameter to minimize a rate mismatch between the output and the input of a decoder buffer. A packet processor checks for impending decoder buffer overflow or underflow events to set minimum and maximum limits on the transmission bit rate. Moreover, these limits are set based on whether a new transmission bit rate can be implemented before the decoding time stamp (DTS) of the current or next frame.
Abstract:
A statistical multiplexer for coding and multiplexing multiple channels of digital television data, or multiple panels of HDTV digital television data. A bit rate need parameter is determined (102, 104, 106) for each encoder (112, 114, 116) in a stat mux group, and an encoding bit rate is allocated to each channel based on its need parameter. A transmission bit rate is allocated to each channel as a time-lagged version of its need parameter to minimize a ra te mismatch between the output and the input of a decoder buffer (184). A packe t processor (250, 350) checks for impending decoder buffer overflow or underfl ow events to set minimum and maximum limits on the transmission bit rate. Moreover, these limits are set based on whether a new transmission bit rate can be implemented before the decoding time stamp (DTS) of the current or ne xt frame.
Abstract:
A statistical multiplexer for coding and multiplexing multiple channels of digital television data, or multiple panels of HDTV digital television data. A bit rate need parameter is determined for each encoder in a stat mux group by scaling the complexities of previous pictures of the same and different picture types. Scaling factors based on an activity level, motion estimation score, and number of pictures of a certain type in a GOP, may be used. Moreover, the scaling factors may be bounded based on a linear or non-linear operator to prevent large variations in the factors. An encoding bit rate is allocated to each channel based on its need parameter.
Abstract:
A statistical multiplexer for coding and multiplexing multiple channels of digital television data, or multiple panels of HDTV digital television data. A bit rate need parameter is determined for each encoder in a stat mux group, and an encoding bit rate is allocated to each channel based on its need parameter. A transmission bit rate is allocated to each channel as a time-lagged version of its need parameter to minimize a rate mismatch between the output and the input of a decoder buffer. A packet processor checks for impending decoder buffer overflow or underflow events to set minimum and maximum limits on the transmission bit rate. Moreover, these limits are set based on whether a new transmission bit rate can be implemented before the decoding time stamp (DTS) of the current or next frame.
Abstract:
A statistical multiplexer for coding and multiplexing multiple channels of digital television data, or multiple panels of HDTV digital television data. A bit rate need parameter is determined for each encoder in a stat mux group, and an encoding bit rate is allocated to each channel based on its need parameter. A transmission bit rate is allocated to each channel as a time-lagged version of its need parameter to minimize a rate mismatch between the output and the input of a decoder buffer. A packet processor checks for impending decoder buffer overflow or underflow events to set minimum and maximum limits on the transmission bit rate. Moreover, these limits are set based on whether a new transmission bit rate can be implemented before the decoding time stamp (DTS) of the current or next frame.