Abstract:
Active seal assemblies employing active materials that can be controlled and remotely changed to alter the seal effectiveness, wherein the active seal assemblies actively change modulus properties such as stiffness, shape orientation, and the like of the seal assembly. In this manner, in seal applications such as a vehicle door application, door opening and closing efforts can be minimized yet seal effectiveness can be maximized.
Abstract:
An airflow control device comprises a body and an active material in operative communication with the body. The active material, such as shape memory material, is operative to change at least one attribute in response to an activation signal. The active material can change its shape, dimensions and/or stiffness producing a change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness to control vehicle airflow to better suit changes in driving conditions such as weather, ground clearance and speed, while reducing maintenance and the level of failure modes. As such, the device reduces vehicle damage due to inadequate ground clearance, while increasing vehicle stability and fuel economy. An activation device, controller and sensors may be employed to further control the change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness of the device. A method for controlling vehicle airflow selectively introduces an activation signal to initiate a change of at least one feature of the device that can be reversed upon discontinuation of the activation signal.
Abstract:
Reversible energy absorbing assemblies (10, 100) for impact management have elements (16, 120) that plastically buckle along a predefined buckling path.
Abstract:
Active seal assemblies employing active materials that can be controlled and remotely changed to alter the seal effectiveness, wherein the active seal assemblies actively change modulus properties such as stiffness, shape orientation, and the like. In this manner, in seal applications tailored for vehicles such as in a vehicle door application, door opening and closing efforts can be minimized yet seal effectiveness can be maximized.
Abstract:
An airflow control device comprises a body and an active material in operative communication with the body. The active material, such as shape memory material, is operative to change at least one attribute in response to an activation signal. The active material can change its shape, dimensions and/or stiffness producing a change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness to control vehicle airflow to better suit changes in driving conditions such as weather, ground clearance and speed, while reducing maintenance and the level of failure modes. As such, the device reduces vehicle damage due to inadequate ground clearance, while increasing vehicle stability and fuel economy. An activation device, controller and sensors may be employed to further control the change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness of the device. A method for controlling vehicle airflow selectively introduces an activation signal to initiate a change of at least one feature of the device that can be reversed upon discontinuation of the activation signal.
Abstract:
Active seal assemblies employing active materials that can be controlled and remotely changed to alter the seal effectiveness, wherein the active seal assemblies actively change modulus properties such as stiffness, shape orientation, and the like. In this manner, in seal applications tailored for vehicles such as in a vehicle door application, door opening and closing efforts can be minimized yet seal effectiveness can be maximized.