Abstract:
A method for building a model-based control solution is disclosed. The method includes obtaining, via a model-based control definition sub-unit, a first set of component models from a component model library and defining, via the model-based control definition sub-unit, a system model by interconnecting the first set of component models. Also, the method includes obtaining, via the model-based control definition sub-unit, a first model-based analytic algorithm from a model-based analytic algorithm library and associating, via the model-based control definition sub-unit, the first model-based analytic algorithm with the system model to generate the model-based control solution.
Abstract:
A method includes identifying power outputs to be provided by propulsion-generating vehicles of a vehicle system for different locations along a route and calculating handling parameters of the vehicle system at the locations along the route. The handling parameters are representative of at least one of coupler forces, coupler energies, relative vehicle velocities, or natural forces exerted on the vehicle system. The method also includes determining asynchronous operational settings for the propulsion-generating vehicles at the locations. The asynchronous operational settings represent different operational settings that cause the propulsion-generating vehicles to provide at least the power outputs at the locations while changing the handling parameters of the vehicle system to designated values at the locations. The method further includes communicating the asynchronous operational settings to the propulsion-generating vehicles in order to cause the propulsion-generating vehicles to implement the asynchronous operational settings at the different locations.
Abstract:
A vehicle control system and method determine one or more designated speeds of a trip plan for a trip of a vehicle system along a route. The trip plan can designate the one or more designated speeds as a function of one or more of time or distance along the route for the trip. Geometry of the route that the vehicle system will travel along during the trip is determined, as well as one or more prospective forces that will be exerted on the vehicle system during movement of the vehicle system along the route for the trip based at least in part on the geometry of the route. The trip plan is revised to reduce at least one of the prospective forces by reducing at least one of the designated speeds of the trip plan based on the one or more prospective forces that are determined.
Abstract:
A method for estimating and managing life of a gas turbine is provided. The method includes estimating a remaining useful life of a component of a gas turbine, obtaining parameters of the gas turbine, at least one of which comprises the estimate of the remaining useful life of a component of the gas turbine, assigning operating weightages to the gas turbine parameters based a plant objective, generating a set point for operating the gas turbine based on the weighted gas turbine parameters, and adjusting an operating characteristic of the gas turbine to meet the set point.
Abstract:
A method includes identifying power outputs to be provided by propulsion-generating vehicles of a vehicle system for different locations along a route and calculating handling parameters of the vehicle system at the locations along the route. The handling parameters are representative of at least one of coupler forces, coupler energies, relative vehicle velocities, or natural forces exerted on the vehicle system. The method also includes determining asynchronous operational settings for the propulsion-generating vehicles at the locations. The asynchronous operational settings represent different operational settings that cause the propulsion-generating vehicles to provide at least the power outputs at the locations while changing the handling parameters of the vehicle system to designated values at the locations. The method further includes communicating the asynchronous operational settings to the propulsion-generating vehicles in order to cause the propulsion-generating vehicles to implement the asynchronous operational settings at the different locations.
Abstract:
A method for building a model-based control solution is disclosed. The method includes obtaining, via a model-based control definition sub-unit, a first set of component models from a component model library and defining, via the model-based control definition sub-unit, a system model by interconnecting the first set of component models. Also, the method includes obtaining, via the model-based control definition sub-unit, a first model-based analytic algorithm from a model-based analytic algorithm library and associating, via the model-based control definition sub-unit, the first model-based analytic algorithm with the system model to generate the model-based control solution.