Abstract:
A system for adjusting a position of one or more exterior vehicle lights includes an accelerometer providing data indicating changes in vehicle pitch; a vehicle -mounted camera providing additional data indicating changes in vehicle pitch; and a control unit receiving the data from both the accelerometer and the vehicle- mounted camera, processing the data, and communicating a command to a vehicle light leveling actuator based on data from the accelerometer and the vehicle-mounted camera.
Abstract:
An exterior light control system for controlling exterior lights of a controlled vehicle is provided, which includes an imager configured to image a scene external and forward of the controlled vehicle and to generate image data corresponding to the acquired images. A controller is configured to receive and analyze the image data and generate a control signal for controlling the exterior lights of the controlled vehicle. The controller is further configured to receive temperature information relating to an operational temperature of the imager, wherein when the controller determines that the operational temperature of the imager is below a temperature threshold, the control signal includes an indication that the imager is blocked.
Abstract:
A system for calculating a visibility range from a vehicle is disclosed. The system comprises a high dynamic range image sensor system comprising a pixel array including a plurality of pixels. The image sensor further includes readout circuitry in electrical communication with each pixel of the pixel array. The readout circuitry is operable to readout a distinct pixel value corresponding to one of a plurality of exposure times for each pixel in a single image frame. The system further comprises at least one processor in communication with the readout circuitry. The processor is operable to calculate a visibility range from the vehicle based on a plurality of image processing algorithms.
Abstract:
A vehicular imaging system for determining roadway width includes an image sensor for capturing images and an image processor for receiving the captured images. The image processor determines roadway width by identifying roadway marker signs and oncoming traffic in processed images captured by the image sensor and determining the number of lanes, vehicle location on the roadway based on the roadway size and/or width and location of oncoming traffic.
Abstract:
A method and system are provided to image an external scene by employing a custom image sensor. The custom image sensor may use a GRRB array to filter the images of oncoming and preceding vehicle taillights captured by a vehicle camera. The method and system may also calculate a GRRB color metric for use in the custom image sensor by performing interpolation on a number of color channels, summing the brightness values for each of the color channels interpolated, normalizing each of the brightness values, and converting the normalized brightness values from an RGB scale to a linear scale of non-red to red.
Abstract:
A classification system and method are provided, wherein the classification system includes a memory device, a processor communicatively connected to the memory device, and an input communicatively connected to the processor, wherein the input is configured to receive data comprising at least one object that is to be classified as one of an object of interest (OOI) and a nuisance of interest (NOI) based upon at least one non-Boolean attribute of the object, wherein the processor is configured as a Bayesian classifier to classify the object based upon the non-Boolean attribute using a non-linear probability function.
Abstract:
A system for calculating a visibility range from a vehicle is disclosed. The system comprises a high dynamic range image sensor system comprising a pixel array including a plurality of pixels. The image sensor further includes readout circuitry in electrical communication with each pixel of the pixel array. The readout circuitry is operable to readout a distinct pixel value corresponding to one of a plurality of exposure times for each pixel in a single image frame. The system further comprises at least one processor in communication with the readout circuitry. The processor is operable to calculate a visibility range from the vehicle based on a plurality of image processing algorithms.
Abstract:
A vehicular imaging system for determining roadway width includes an image sensor for capturing images and an image processor for receiving the captured images. The image processor determines roadway width by identifying roadway marker signs and oncoming traffic in processed images captured by the image sensor and determining the number of lanes, vehicle location on the roadway based on the roadway size and/or width and location of oncoming traffic.