Abstract:
A trainable transceiver for controlling a device includes an antenna array, at least one location sensor or connection to a location sensor, and a control circuit. The antenna array includes at least two antennas and is configured to direct a transmission. The control circuit is coupled to the antenna array and the at least one location sensor. The control circuit is configured to control the antenna array to direct the transmission along an antenna heading corresponding to a communication path between the trainable transceiver and the device, and wherein the control circuit is configured to determine the communication path based on (A) a location of the trainable transceiver determined by the control circuit based on information from the at least one location sensor and (B) a location of the device determined by the control circuit.
Abstract:
A window apparatus of a vehicle includes a removable panel that selectively encloses an exterior opening of the vehicle that includes an electro-optic apparatus. The electro-optic apparatus is configured to adjust a transmittance of the window. A wireless connection interface is in connection with an interface surface of the removable panel, wherein the wireless connection interface communicates power and/or electrical signals from the vehicle to the electro-optic apparatus.
Abstract:
A system for controlling a remote device includes a mobile communications device and a trainable transceiver. The mobile communications device includes a display, a camera flash, a speaker, and a processing circuit coupled to the display, the camera flash, and the speaker. The trainable transceiver includes a transceiver circuit, a communications device, and a control circuit coupled to the transceiver circuit and the communications device. The trainable transceiver is configured to be in communication with the mobile communications device using the communications device, and the control circuit is configured to receive training information from the mobile communications device and train the trainable transceiver to communicate with the remote device based on the training information.
Abstract:
A method for authenticating a user prior to allowing the user to interact with a vehicle-based wireless trainable transceiver. The authentication method includes a separate user's device. The authentication method also includes a step in which the separate user's device is linked to the transceiver through an interface; the device is then stored as an authenticated device. The authentication method also includes a step in which the authenticated device is confirmed to be within a predefined range of the vehicle-based wireless transceiver, after which the owner of the authenticated device will be authorized to interact with the vehicle-based wireless transceiver.
Abstract:
A trainable transceiver for installation in a vehicle and for controlling a remote device includes a transceiver circuit configured, based on training information, to control the remote device, a communications device configured to communicate with a mobile communications device, an output device, and a control circuit coupled to the transceiver circuit, coupled to the communications device, and coupled to the output device. The control circuit is configured to receive notification information from the mobile communications device via the communications device, and wherein the control circuit is configured to generate an output using the output device based on the notification information.
Abstract:
A system for installation in a vehicle and for controlling a remote device includes a trainable transceiver, a camera, and a control circuit coupled to the trainable transceiver and the camera. The control circuit is configured to use the camera to identify the remote device by comparing information received via the camera to information stored in memory, and the control circuit is configured to automatically transmit an activation signal formatted to control the remote device in response to identifying the remote device
Abstract:
A trainable transceiver for installation in a vehicle and for controlling a remote device includes a transceiver circuit configured based on training information to communicate with the remote device, a communications device configured to communicate with a mobile communications device, and a control circuit coupled to the transceiver circuit, and coupled to the communications device. The control circuit is configured to transmit diagnostic information related to the trainable transceiver to a mobile communications device via the communications device.
Abstract:
A system for installation in a vehicle and for controlling a device, the system including a trainable transceiver, communications electronics, and a processing circuit coupled to the trainable transceiver and the communications electronics. The processing circuit is configured to train the trainable transceiver to control a device using information received from a cloud computing system remote from the device and vehicle via the communications electronics.
Abstract:
A method for authenticating a user prior to allowing the user to interact with a vehicle-based wireless trainable transceiver. The authentication method includes a separate user's device. The authentication method also includes a step in which the separate user's device is linked to the transceiver through an interface; the device is then stored as an authenticated device. The authentication method also includes a step in which the authenticated device is confirmed to be within a predefined range of the vehicle-based wireless transceiver, after which the owner of the authenticated device will be authorized to interact with the vehicle-based wireless transceiver.