Abstract:
A system for controlling a purely photonic network comprising: at least one digital computing device configured for: storing instructions which, when executed by one or more processors, cause the instructions to control a photonic network, the photonic network comprising purely photonic elements that require no electrical-to-optical or optical-to-electrical conversion between a network input port and a network output port, wherein the digital computing device stores: 1) relationship information that describes the relationships between a plurality of network elements in the photonic network; and 2) configuration information that describes the current state of each of the plurality of network elements; receiving a path generation request that includes a first port identifier and a second port identifier, wherein the first port identifier represents an input port and the second port identifier represents a first output port; based at least in part on the relationship information and the configuration information, generating candidate paths that begin at the input port and end at at least the first output port.
Abstract:
A system for controlling a purely photonic network comprising: at least one digital computing device configured for: storing instructions which, when executed by one or more processors, cause the instructions to control a photonic network, the photonic network comprising purely photonic elements that require no electrical-to-optical or optical-to-electrical conversion between a network input port and a network output port, wherein the digital computing device stores: 1) relationship information that describes the relationships between a plurality of network elements in the photonic network; and 2) configuration information that describes the current state of each of the plurality of network elements; receiving a path generation request that includes a first port identifier and a second port identifier, wherein the first port identifier represents an input port and the second port identifier represents a first output port; based at least in part on the relationship information and the configuration information, generating candidate paths that begin at the input port and end at at least the first output port.
Abstract:
A method for generating optical paths in a photonic network is provided. A model of a photonic network is used to store relationship information that describes the relationships between photonic network elements, as well as configuration information about the elements of the photonic network. A path manager receives a request to generate one or more paths based on an input port and one or more output ports. Using the information stored in the photonic network model, the path manager generates one or more candidate paths.
Abstract:
A method for generating optical paths in a photonic network is provided. A model of a photonic network is used to store relationship information that describes the relationships between photonic network elements, as well as configuration information about the elements of the photonic network. A path manager receives a request to generate one or more paths based on an input port and one or more output ports. Using the information stored in the photonic network model, the path manager generates one or more candidate paths.
Abstract:
A method for generating optical paths in a photonic network is provided. A model of a photonic network is used to store relationship information that describes the relationships between photonic network elements, as well as configuration information about the elements of the photonic network. A path manager receives a request to generate one or more paths based on an input port and one or more output ports. Using the information stored in the photonic network model, the path manager generates one or more candidate paths.
Abstract:
A system for controlling a purely photonic network comprising: at least one digital computing device configured for: storing instructions which, when executed by one or more processors, cause the instructions to control a photonic network, the photonic network comprising purely photonic elements that require no electrical-to-optical or optical-to-electrical conversion between a network input port and a network output port, wherein the digital computing device stores: 1) relationship information that describes the relationships between a plurality of network elements in the photonic network; and 2) configuration information that describes the current state of each of the plurality of network elements; receiving a path generation request that includes a first port identifier and a second port identifier, wherein the first port identifier represents an input port and the second port identifier represents a first output port; based at least in part on the relationship information and the configuration information, generating candidate paths that begin at the input port and end at at least the first output port.