Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to mask structures and methods of manufacture. The method includes determining a plane through a frontside surface and a backside surface of a mask, each plane representing a flatness of the frontside surface and the backside surface, respectively; subtracting, using at least one computing device, a difference between the plane of the frontside surface and the plane of the backside surface to find a thickness variation; generating, using the at least one computing device, a fitting to fit the thickness variation; and subtracting, using the at least one computing device, the fitting from the thickness variation to generate a residual structure for collecting a residual flatness measurement.
Abstract:
An extreme ultraviolet (EUV) mask including an absorber structure is disclosed. The absorber structure may include at least one slanted and/or concave sidewall. The absorber structure may include a sidewall including a step. A method of forming an absorber for an EUV mask is disclosed. The method may include etching an absorber layer using a mask to form an absorber structure having a sidewall wherein an outer edge of the top surface of the sidewall is closer to a central vertical axis of the absorber structure than an outer edge of the bottom surface of the sidewall. The method may include performing additional etching steps to form a step along the sidewall of the absorber structure. The etching may include combinations of anisotropic etching in different directions, and/or isotropic etching. The method may include etching an absorber layer including multiple absorber layers having different material properties on the ML reflector.
Abstract:
Disclosed are a repairable photomask structure and extreme ultraviolet (EUV) photolithography methods. The structure includes a multilayer stack, a protective layer above the stack and a light absorber layer above the protective layer. The stack includes alternating layers of high and low atomic number materials and a selected one of the high atomic number material layers is different from the others such that it functions as an etch stop layer. This configuration allows the photomask structure to be repaired if/when defects are detected near exposed surfaces of the multilayer stack following light absorber layer patterning. For example, when a defect is detected near an exposed surface of the stack in a specific opening in the light absorber layer, the opening can be selectively extended down to the etch stop layer or all the openings can be extended down to the etch stop layer in order to remove that defect.
Abstract:
Various aspects include extremely thin semiconductor-on-insulator (ETSOI) layers. In one embodiment, an ETSOI layer includes a plurality of shallow trench isolations (STI) defining a plurality of distinct semiconductor-on-insulator (SOI) regions, the distinct SOI regions having at least three different thicknesses; at least one recess located within the distinct SOI regions; and an oxide cap over the at least one recess.
Abstract:
Embodiments of a method include: converting at least one image of a printed mask to a plurality of representative contours, each corresponding to mask patterns in the printed mask; determining whether the printed mask includes a printing defect based on whether the plurality of representative contours violates a set of contour tolerances for the printed mask; in response to at least one of plurality of representative contours violating at least one of the set of contour tolerances: identifying a location where a representative contour violates the at least one of the set of contour tolerances, and generating an instruction to adjust a layout for the printed mask, based on the violating of the at least one of the set of contour tolerances; and in response to none of the plurality of representative contours violating the set of contour tolerances, flagging a layout for the printed mask as compliant.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to modified surfaces of extreme ultraviolet lithography photomasks and methods of manufacture. The structure includes a reflective surface having a patterned design, and a black border region at edges of the patterned design. The black border region includes a modified surface morphology to direct light away from reaching a subsequent mirror.
Abstract:
An apparatus and method of etching. The apparatus including a support substrate having a top surface; a stack of a multiplicity of layers formed on the top surface of the support substrate from a lowermost layer on the top surface of the support substrate to a topmost layer that is furthest from the support substrate; and wherein an entirety of the top surface of the topmost layer is not planar and at least one of the multiplicity of layers that is not the topmost layer is an electrically conductive layer.
Abstract:
An extreme ultraviolet (EUV) mask including an absorber structure is disclosed. The absorber structure may include at least one slanted and/or concave sidewall. The absorber structure may include a sidewall including a step. A method of forming an absorber for an EUV mask is disclosed. The method may include etching an absorber layer using a mask to form an absorber structure having a sidewall wherein an outer edge of the top surface of the sidewall is closer to a central vertical axis of the absorber structure than an outer edge of the bottom surface of the sidewall. The method may include performing additional etching steps to form a step along the sidewall of the absorber structure. The etching may include combinations of anisotropic etching in different directions, and/or isotropic etching. The method may include etching an absorber layer including multiple absorber layers having different material properties on the ML reflector.
Abstract:
Embodiments of a method include: converting at least one image of a printed mask to a plurality of representative contours, each corresponding to mask patterns in the printed mask; determining whether the printed mask includes a printing defect based on whether the plurality of representative contours violates a set of contour tolerances for the printed mask; in response to at least one of plurality of representative contours violating at least one of the set of contour tolerances: identifying a location where a representative contour violates the at least one of the set of contour tolerances, and generating an instruction to adjust a layout for the printed mask, based on the violating of the at least one of the set of contour tolerances; and in response to none of the plurality of representative contours violating the set of contour tolerances, flagging a layout for the printed mask as compliant.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to modified surfaces of extreme ultraviolet lithography photomasks and methods of manufacture. The structure includes a reflective surface having a patterned design, and a black border region at edges of the patterned design. The black border region includes a modified surface morphology to direct light away from reaching a subsequent mirror.