Abstract:
A hybrid torque bar for a brake assembly may comprise a base portion, a pin extending from a first end of the base portion, and a rail extending between the first end of the base portion and a second end of the base portion opposite the first end. The base portion may be formed using a first manufacturing process. At least one of the pin or the rail may be formed using a second manufacturing process. The second manufacturing process may comprise an additive manufacturing technique.
Abstract:
A hybrid torque tube for a brake assembly may comprise a tube portion having a centerline axis, and a conical back-leg portion extending from the tube portion. A stator spline may be formed on a radially outward surface of the tube portion. A foot may be formed on a radially inward surface of the tube portion. The tube portion is formed using a first manufacturing process and at least one of the conical back-leg, stator spline, or foot is formed using additive manufacturing.
Abstract:
A method of forming an aircraft component includes providing an aluminum alloy. The method further includes mixing a shape memory alloy (SMA) with the aluminum alloy to form a combination of the SMA and the aluminum alloy. The method further includes forming the aircraft component with the combination of the SMA and the aluminum alloy.
Abstract:
A hybrid torque tube for a brake assembly may comprise a tube portion having a centerline axis, and a conical back-leg portion extending from the tube portion. A stator spline may be formed on a radially outward surface of the tube portion. A foot may be formed on a radially inward surface of the tube portion. The tube portion is formed using a first manufacturing process and at least one of the conical back-leg, stator spline, or foot is formed using additive manufacturing.
Abstract:
A hybrid torque bar for a brake assembly may comprise a base portion, a pin extending from a first end of the base portion, and a rail extending between the first end of the base portion and a second end of the base portion opposite the first end. The base portion may be formed using a first manufacturing process. At least one of the pin or the rail may formed using a second manufacturing process. The second manufacturing process may comprise an additive manufacturing technique.
Abstract:
A hybrid torque bar for a brake assembly may comprise a base portion, a pin extending from a first end of the base portion, and a rail extending between the first end of the base portion and a second end of the base portion opposite the first end. The base portion may be formed using a first manufacturing process. At least one of the pin or the rail may be formed using a second manufacturing process. The second manufacturing process may comprise an additive manufacturing technique.
Abstract:
A hybrid torque tube for a brake assembly may comprise a tube portion having a centerline axis, and a conical back-leg portion extending from the tube portion. A stator spline may be formed on a radially outward surface of the tube portion. A foot may be formed on a radially inward surface of the tube portion. The tube portion is formed using a first manufacturing process and at least one of the conical back-leg, stator spline, or foot is formed using additive manufacturing.
Abstract:
A hybrid torque tube for a brake assembly may comprise a tube portion having a centerline axis, and a conical back-leg portion extending from the tube portion. A stator spline may be formed on a radially outward surface of the tube portion. A foot may be formed on a radially inward surface of the tube portion. The tube portion is formed using a first manufacturing process and at least one of the conical back-leg, stator spline, or foot is formed using additive manufacturing.
Abstract:
A substantially lithium-free alloy may comprise copper from 4.8 wt. % to 5.4 wt. %, magnesium from 0.7 wt. % to 1.1 wt. %, silver from 0.55 wt. % to 0.7 wt. %, and lithium at or below 0.005 wt. %. The substantially lithium-free alloy may further comprise silver from 0.56 wt. % to 0.7 wt. %. The substantially lithium-free alloy may also comprise zirconium from 0.08 wt. % to 0.15 wt. %. The substantially lithium-free alloy may include titanium at or below 0.06 wt. %, iron at or below 0.1 wt. %, silicon at or below 0.08 wt. %, beryllium at or below 0.0001 wt. %, chromium at or below 0.05 wt. %, and zinc at or below 0.25 wt. %.
Abstract:
A manufacturing process may comprise: stacking a plurality of friction discs together, each friction disc comprising a lug defining a surface; and depositing a composition to bond to the surface of a first friction disc in the plurality of friction discs to form a wear pad defining a wear surface.