Abstract:
The present disclosure relates to a method for controlling a digital photography system. The method includes obtaining, by a device, image data and audio data. The method also includes identifying one or more objects in the image data and obtaining a transcription of the audio data. The method also includes controlling a future operation of the device based at least on the one or more objects identified in the image data, and the transcription of the audio data.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining a global model for a particular activity, the global model derived based on input data representing multiple observations associated with the particular activity performed by a collection of users; determining, using the global model, expected data representing an expected observation associated with the particular activity performed by a particular user; receiving, by a computing device operated by the particular user, particular data representing an actual observation associated with the particular activity performed by the particular user; determining, by the computing device and using (i) the expected data and (ii) the particular data, residual data of the particular user; and deriving a local model of the particular user based on the residual data.
Abstract:
Systems and methods are provided for suggesting actions for selected text based on content displayed on a mobile device. An example method can include converting a selection made via a display device into a query, providing the query to an action suggestion model that is trained to predict an action given a query, each action being associated with a mobile application, receiving one or more predicted actions, and initiating display of the one or more predicted actions on the display device. Another example method can include identifying, from search records, queries where a website is highly ranked, the website being one of a plurality of websites in a mapping of websites to mobile applications. The method can also include generating positive training examples for an action suggestion model from the identified queries, and training the action suggestion model using the positive training examples.
Abstract:
A messaging application may automatically analyze content of one or more messages and/or user information to automatically provide suggestions to a user within a messaging application. The suggestions may automatically incorporate particular non-messaging functionality into the messaging application. The automatic suggestions may suggest one or more appropriate responses to be selected by a user to respond in the messaging application, and/or may automatically send one or more appropriate responses on behalf of a user.
Abstract:
Systems and methods of determining a global model are provided. In particular, one or more local updates can be received from a plurality of user devices. Each local update can be determined by the respective user device based at least in part on one or more data examples stored on the user device. The one or more data examples stored on the plurality of user devices are distributed on an uneven basis, such that no user device includes a representative sample of the overall distribution of data examples. The local updates can then be aggregated to determine a global model.
Abstract:
A system stores a table mapping users to attributes, and stores a second table mapping the users to products associated with a source domain. The system determines a set of top scoring products for each of the attributes, and creates, using the top scoring products, a model that is predictive of an activity in a target domain, the target domain being separate from the source domain. The system detects a behavior from a particular user accessing the target domain, and generates a personalized prediction for the particular user based on the model, in response to the detecting the behavior.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining a global model for a particular activity, the global model derived based on input data representing multiple observations associated with the particular activity performed by a collection of users; determining, using the global model, expected data representing an expected observation associated with the particular activity performed by a particular user; receiving, by a computing device operated by the particular user, particular data representing an actual observation associated with the particular activity performed by the particular user; determining, by the computing device and using (i) the expected data and (ii) the particular data, residual data of the particular user; and deriving a local model of the particular user based on the residual data.
Abstract:
A system stores a table mapping users to attributes, and stores a second table mapping the users to products associated with a source domain. The system determines a set of top scoring products for each of the attributes, and creates, using the top scoring products, a model that is predictive of an activity in a target domain, the target domain being separate from the source domain. The system detects a behavior from a particular user accessing the target domain, and generates a personalized prediction for the particular user based on the model, in response to the detecting the behavior.