KINEMATICS MODELING METHOD, APPARATUS AND DEVICE FOR MULTI-DEGREE-OF-FREEDOM MECHANISM AND STORAGE MEDIUM

    公开(公告)号:US20240359326A1

    公开(公告)日:2024-10-31

    申请号:US18769309

    申请日:2024-07-10

    CPC classification number: B25J9/1664 B25J9/1607 B25J9/163

    Abstract: The present application provides a kinematics modeling method, apparatus and device for a multi-degree-of-freedom mechanism and a storage medium. The method includes: constructing a point coordinate system, and constructing the transformation matrix; constructing transformation matrices of two rotating axes and the transformation matrix; constructing the forward kinematics model based on the transformation matrices of the point coordinate system, the two rotating axes and the workpiece coordinate system; solving the motor value of the rotating axis through the rotation matrix of the end-effector, using the translation matrix of the end-effector as a non-homogeneous linear equation set, solving the motor value of linear axis. Thus solving the technical problem in the prior arts that the redundant parameters are introduced as a cost to separate the linear axis and the rotating axis for step-by-step kinematics calibration, which affects the error calibration precision of the overall end-effector movement of the mechanism.

    KINEMATICS PARAMETER CALIBRATION METHOD AND SYSTEM OF MULTI-AXIS MOTION PLATFORM

    公开(公告)号:US20240335949A1

    公开(公告)日:2024-10-10

    申请号:US18483499

    申请日:2023-10-09

    CPC classification number: B25J9/1692 B25J9/1697

    Abstract: Disclosed are a kinematics parameter calibration method and system of a multi-axis motion platform. The method comprises the following steps of: collecting calibration board images in different spatial positions according to a position relation between the platform and a camera, recording a corresponding motor motion amount, solving a hand-eye pose relation matrix and a pose matrix of a calibration board coordinate system in a platform tail end coordinate system, further solving a coordinate measured value of an angular point on the calibration board in a platform base coordinate system and a coordinate theoretical value of a position matrix of the tail end of the motion platform, determining a residual error matrix according to the measured value and the theoretical value, and identifying an error parameter by the residual error matrix to complete kinematics parameter calibration of the platform.

Patent Agency Ranking